GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS & COMMUNICATION (EMBEDDED SYSTEM) (54)

ADVANCED DIGITAL CIRCUIT DESIGN SUBJECT CODE: 2715410 SEMESTER: I

Type of course: Digital Integrated Circuit Design

Prerequisite: Fundamental knowledge of Digital Logic Design and VLSI

Rationale: Students of ME in Embedded Systems must possess a good understanding of concepts of design implementation. Students also must learn about various programming language which are necessary for the implementation of system on chip.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	T	P	C	Theor	ry Marks		Pract	tical Marks	Marks	
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2	2	5	70	30	20	10	20	0	150

Content:

Sr. No.	Contents	Total Hrs.	%
			Weightage
1	Overview of Digital design with Verilog: Hierarchical modeling, Number specification, data types, Operator types, Modules and Ports, Gate level modeling, Data Flow Modeling, Behavioral Modeling, Tasks and Functions, Modeling Techniques, Logic	15	40
2	Synthesis, Verification Techniques Basics of Sequential and Combinational logic circuits, Two-level and multi-level logic optimization of combinational circuits, state	12	30
3	assignment of finite state machines Technology mapping for FPGAs, Techniques for partitioning, floor planning, placement and routing, Architectural models, scheduling, allocation and binding for high-level synthesis, Hardware-software co design, Test generation, fault simulation	15	40

Reference Books:

- 1. Contemporary Logic Design, Second Edition, Author: R. H. Katz, Publisher: Addison-Wesley.
- 2. Verilog Hdl: A Guide to Digital Design and Synthesis, Second Edition, Author: Samir Palnitkar Publisher: Pearson
- 3. Verilog HDL Synthesis: A Practical Primer, First Edition, Author: J. Bhasker, Publisher: Star Galaxy Publication

Course Outcome:

Students will get sound knowledge in following topics which are required for design of advanced digital circuits.

- 1. Different programmable logic devices.
- 2. Hardware descriptive language
- 3. Placement, routing and floor-planning
- 4. Advanced digital circuit specification, implementation, testing and trouble shooting

List of Experiments:

- 1. Introduction to Verilog and to familiar with Quartus-II tool
- 2. Implementation of basic logic gates, Universal logic gates and it's Testing and also verify the functionality of Arithmetic and Logical operators.
- 3. Verify the functionality of Half Adder, Full Adder, Half Subtractor and Full Subtractor.
- 4. Design and verify (1) 4:1 Mux (2) 8:1 Mux and 16:1 Mux using various statements.
- 5. Design and verify the functionality of 8:3 Encoder and 3:8 Decoder using case statement.
- 6. To Verify the functionality of Shift Register.
- 7. Design and verify binary to gray and gray to binary code convertor using dataflow modeling.
- 8. Design and verify D Flip-flop and JK Flip-flop with behavioral modeling.
- 9. Design and Implementation of 4-Bit up-down counter.
- 10. Design and verify (1) MELAY MODELING (2) MOORE MODELING.
- 11. Design and Implementation of 1K RAM and its verification.

Open Ended Problems

- 1. Design and Implementation of UART on FPGA
- 2. Design and Implementation of image processing on FPGA
- 3. Design and Implementation of receiver circuits

Major Equipments:

- i. Personal Computer
- ii. ALTERA DE-I and DE-II Board

List of Software:

Quartus-II, (Open Source Software)

Learning website:

www.nptel.ac.in