GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS & COMMUNICATION (EMBEDDED SYSTEM) (54) REAL TIME OPERATING SYSTEM FUNDAMENTALS SUBJECT CODE: 2715402 SEMESTER: I

Type of course: Embedded Software Design

Prerequisite: Fundamental Knowledge of programming language C, Micro-controller programming

Rationale: Embedded system engineer must have knowledge of real-time systems. He/she must address issues in real-time system design.

Teaching and Examination Scheme:

Teaching Scheme		Credits	Examination Marks						Total	
L	Т	Р	С	Theor	ry Marks	Pract		tical Marks		Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Contents	Total Hrs.	%
			Weightage
1	Embedded Firmware design approaches	2	5
	Low level language and high level language – Superloop architecture – Requirement of an operating system	2	5
2	Real time system concepts	4	10
	Real-time system – Hard real-time, soft real-time and firm real-		
	time systems		
3	Basic of Operating System	5	10
	Kernel – Kernel services – Process management, I/O management		
	and memory management – Kernel-space and user-space – GPOS		
	and RTOS – Real-time kernel services – RTOS requirement –		
	Real-time kernel services		
4	Process and threads	6	15
	Process – Process states – Process control block – Threads –		
	Multiprocessing and multitasking – Co-operative multitasking,		
5	Scheduling	0	20
5	ECES I CES Shortest job first Driority based	0	20
	scheduling Bound robin Bate monotonic scheduling		
	Scheduning – Kound Tobin – Kate monotonic scheduning –		
		7	1.7
0	Inter process communication	/	15
	Pipes – Message Queue – Mailbox Communication –		
	Remote Procedure Call(RPC) – Sockets	10	• -
7	Synchronization	10	25
	Shared data – Reentrant functions – Racing – Priority		

Inversion – Mutual Exclusion – Sleep & wakeup – Dinin	g
Philosophers' Problem – Readers-Writers Problem	-
Producer-Consumer Problem – Semaphore – Deadlock	_
Deadlock detection and recovery – Deadlock avoidance	_
Starvation	

Reference Books:

- 1. Shibu K V, Introduction to Embedded Systems, Tata Mc Graw Hill Publication, ISBN: 978-0-07-014589-4
- 2. David E. Simon, An Embedded Software Primer, Pearson Education Publication, ISBN: 978-81-7758-154-6
- 3. Andrew S. Tanenbaum, Modern Operating Systems, Third Edition, Pearson Education Publication, ISBN: 978-81-317-2003-5
- Jean J. Labrosse, Micro C/OS-II The Real-Time Kernel, Second Edition, CRC Press Publisher, ISBN: 978-1578201037

Course Outcome:

- 1. To understand Real-Time Operating System requirements and concepts.
- 2. To solve design issues involved with real-time embedded systems
- 3. To analyze the performance of a hard real time system.
- 4. To inculcate an ability to program an embedded system with multitasking concepts

List of Experiments:

- 1. Configure timer to generate time delays for embedded system.
- 2. Configure timer with Interrupt Service Routine and use in super loop architecture.
- 3. Introduction to Real Time Kernel RL-RTx.
- 4. Use Scheduling algorithms available in RL-RTx Kernel for multitasking application design.
- 5. Introduction to multithreading and study of Functions for POSIX Threads
- 6. Design the multitasking application for sharing memory among the tasks.
- 7. Use Semaphore for providing exclusive excess to input output device.
- 8. Study Inter-process communication mechanisms in RTOS environment.
- 9. Study Micro C OS-ii functions for RTOS based application development
- 10. Implement data transfer using UART protocol in RTOS environment.

Lab sessions may include implementation & study of real time operating systems other than stated above.

Open Ended Problems

- 1. Implement a real time intruder detector system.
- 2. Implement open source RTOS "Free RTOS" on ARM based development board. Implement 3 tasks to blink 3 LEDs with different delays.
- 3. Install Robotics Operating System (ROS) on your machine and develop code to grab video from camera.
- 4. Configure real time Linux kernel and write a code to create 10 threads and close all threads after specific time delay.
- 5. Write a simple device driver to read value from Hex keyboard

Major Equipments:

Hardware Platform

ARM based development board. 8051 based kit.

List of Software:

Keil Eclipse Linux IAR Embedded Workbench

Learning website:

http://micrium.com http://www.freertos.org http://www.keil.com/support/man/docs/rlarm/rlarm_ar_artxarm.htm https://rt.wiki.kernel.org