GUJARAT TECHNOLOGICAL UNIVERSITY

MECHATRONICS (47) ADVANCE CONTROL SYSTEMS SUBJECT CODE: 2714702 SEMESTER: I

Type of course: Engineering

Prerequisite: NA

Rationale: The course intends to provide foundations related to control engineering to graduate students. The course should enhance their ability to analyse and control multiple domain systems using techniques and tools related to control systems.

Teaching and Examination Scheme:

Tea	ching Scl	heme	Credits		Examination Marks				Total	
L	Т	Р	С	Theor	ry Marks	Practical Marks			Marks	
				ESE	PA (M)	PA	A(V)	PA	(I)	
				(E)		ESE	OEP	PA	RP	
4	0	2	5	70	30	20	10	20	0	150

Content:

Sr. No.	Content	Total	% Weightage
		Hrs	
1	DESIGN AND ANALYSIS OF COMPENSATION	10	19
	TECHNIQUES		
	Performance specifications, design considerations in time and		
	frequency domain, lead, lag and lead-lag compensation based on		
	root locus and frequency response approaches		
2	DISCRETE TIME SYSTEMS	12	23
	Introduction to discrete time systems, analog and digital controllers, the		
	z-transform, basic definition of z-transform, derivation of z-transform of		
	standard functions, difference equation and its solution by the z-		
	transform method, initial and final value theorem, inverse z-transform		
	using infinite series and partial fraction methods, pulse transfer function,		
	pulse transfer function of closed-loop system using signal flow graph		
	technique, stability analysis in z-plane		
3	STATE-SPACE ANALYSIS OF CONTROL SYSTEMS	10	19
	Limitations of conventional control theory, state-variables and state		
	vectors, state-space representation of higher order systems with forcing		
	functions, solution of homogeneous and non-homogeneous state equations		
	in time-domain and frequency-domain, matrix exponential, state-transition		
	matrix, transfer matrix		
4	NONLINEAR SYSTEM ANALYSIS	12	23
	Introduction to nonlinear systems, standard nonlinearities in control		
	systems, Describing function analysis of nonlinear control systems,		
	stability of sustained oscillations or limit cycle. Concepts of phase plane		
	analysis, phase plane portraits, phase plane analysis of linear and nonlinear		

control system, Lyapunov	stability theorems, I	Lyapunov function	ns for	
nonlinear systems				

Reference Books:

- 1. M. Gopal, "Control Systems: Principles and Design" (3rd Edition), TMH.
- 2. M. Gopal, "Digital control and state-variable methods" (3rd Edition), TMH.
- 3. B. C. Kuo, "Automatic control systems", PHI.
- 4. Norman Nise, "Control System Engineering", Wiley India Edition

Course Outcome:

After learning the course the students will be able to:

- 1. Students will be able to develop mathematical models for controlling system behaviour.
- 2. Students will be able to control the systems with nonlinear behavious.
- 3. Students will learn fundamentals and applications of control theory for multidisciplinary engineering problems.
- 4. Students will learn fundamentals of intelligent/smart control systems used in automation

List of Experiments:

- 1. To study about Phase-Lead Controller.
- 2. To study about Phase-Lag Controller.
- 3. To study about effect of Non-linearity in stable Control systems.
- 4. Phase-plane trajectory for Non-linear control systems.
- 5. To study about Z-Transform and its properties.
- 6. To study about stability analysis of Discrete-time Control Systems.
- 7. State-Space Analysis study with respect to Transfer function method for Stable Control Systems
- 8. To study about fuzzy control Systems.
- 9. To study about Neural Control Systems.
- 10. Practical Application Development (Mini project)

Open Ended Problems:

Students may carry out analysis of specific application based intelligent control system with its mathematical analysis and feedback control system. Control system analysis may be of a linear, nonlinear or discrete category and can be carried out using any simulation software

Major Equipments:

- 1. All these experimental study with Software Tool: MATLAB.
- 2. MATLAB contains Control Systems Toolbox, Digital Signal Processing Toolbox, Fuzzy Toolbox, Neural Toolbox.
- 3. Control Experiment Equipment: PID Control, Non-linear Control Systems, Discrete-time Control Systems

List of Open Source Software/learning website:

Demo versions of MATLAB and other control theory related softwares are available free of cost for limited periods