GUJARAT TECHNOLOGICAL UNIVERSITY

RUBBER ENGINEERING (40) MIXING OF RUBBERS SUBJECT CODE: 2714002 SEMESTER: I

Type of course: Core-I (M.E.Rubber Technology)

Prerequisite:--

Rationale:--

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theor	ry Marks		Prace	tical Marks		Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Overview of Mixing of Rubber: Unit Processes, Interpretation of Mixing Process, Compaction as a part of the Mechanism in incorporating Carbon Black into an Elastomer.		10
2	Polymerisation and Molecular Architecture: Natural Rubber & Synthetic Rubbers.	6	5
3	Mill Processibility: Interpretation of Mill Processibility, Science of Mill Processibility.	4	5
4	Viscoelasticity and Fracture: Introduction to Viscoelasticity, Viscoelasticity for Characterisation, Viscoelastic Behaviour of Rubber in an Internal Mixer, Mechanism of Fracture of Gum rubber.	5	10
5	Linear Viscoelasticity: Linear Viscoelasticity and mixing of rubber, Relaxation time and its distribution, Linear viscoelasticity as a conceptual background for the mixing of rubber.	5	10
6	Viscoelastic Characterisation of Rubber Compounds: Viscoelastic Properties of Compounds, Strain and Strain-rate Amplification, Unique Characteristics of Compounds.	4	10
7	Application of Characterisation Methods for a Specific Problem : Effect of Fillers and Rubber Structures on Tensile behavior of filled, Unvulcanised compounds of Cis 1,4-Polybutadiene.	4	10
8	Reinforcing Fillers & Liquid Additives: Reinforcing Fillers- Mixing case of fillers, structure of aggregate and agglomerate. Liquid Additives- The Energy Aspects of Mixing Rubber: Energy Balance- Experiment, Experimental Programme.	4	5
9	Proposed Model of a Mixing Mechanism: Changes in material during mixing, Mechanical actions, Material-	4	10

	machine interaction, Macroscopic versus microscopic deformation.		
10	Model of Material Behaviour in the Internal Mixer: Material Properties, Pressure profile in the internal mixer, deformation of material between rotor edge and chamber wall, Probability and distribution in mixing, Calculation of Mixing energy.	4	10
11	Nano and Molecular Scale of Mixing: Chemical Reactions during Mixing, Optimimum state of the elastomer for mixing, Improvements in rotor design.	5	5
12	Post-Mixing Processes : Causes of non uniformity in feeding, Material behavior, flow Mechanism etc.	4	10

Reference Books:

- 1. The Science & Practice of Rubber Mixing by Nakajima 1st Edition 2000.
- 2. Mixing of Rubbers by Dr. John M.Funt

Course Outcome:

After learning the course the students should be able to:

- 1. Understand the compaction process.
- 2. Identify the Changes in material during Mixing.
- 3. Justify the compounding mechanism in depth.
- 4. Identify the difference between uniform & non uniform mixing.
- 5. Calculate the mixing energy.
- 6. Through mechanism able to save power, energy and environment.
- 7. Develop different models of mixing.
- 8. Understand the molecular architecture.
- 9. Understand the viscoelastic behavior of different elastomers.

List of Experiments:

Tutorials/Presentation/Practicals based on above topics

Open Ended Problems:

- 1. Methods to characterize Rubber Elastic Behavior for use in Finite Element Analysis.
- 2. Cooling Impact on rubber mixing.
- 3. Energy Efficiency in rubber Processing.
- 4. Natural Rubber as a green commodity

Major Equipments:

Mixing Mill, Extruder, Calender Machine, Press etc

List of Open Source Software/learning website:

- Mixing of Rubber By Dr. Gupta
- http://www.crcpress.com
- http://freevideolectures.com/Course/3070/Science-and-Technology-of-Polymers