GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL (PRODUCTION ENGINEERING) (28) ADVANCE MATERIAL TECHNOLOGY **SUBJECT CODE**: 2712806 SEMESTER: I

Type of course: Production Engineering (Core II)

Prerequisite:Nil

Rationale:This course provides the knowledge and practice regarding different Material & their behavior. This course gives hands on practice regarding Elastic, Plastic & Failure behaviour. This course gives knowledge for material selection and basic of Composite Materials.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Practical Marks				Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics		Module Weightage
1	Elastic and Plastic Behaviors Elasticity in metals and polymers - Mechanism of plastic deformation, role of dislocations, yield stress, shear strength of perfect and real crystals - Strengthening mechanisms, work hardening, solid solution hardening, grain boundary strengthening, poly phase mixture, precipitation, particle, fibre and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviors - Super plasticity - Deformation of non crystalline material.	6	15
2	Fracture Behavior Griffith's theory, stress intensity factor and fracture toughness - Toughening mechanisms - Ductile, brittle transition in steel - High temperature fracture, creep - Larson-Miller parameter - Deformation and fracture mechanism maps - Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law - Effect of surface and metallurgical parameters on fatigue - Fracture of non metallic materials – Failure Analysis, sources of failure, procedure of failure analysis.	8	20
3	Selection of Materials Motivation for selection, cost basis and service requirements - Selection for mechanical properties, strength, toughness, fatigue and creep - Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing - Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications.	6	15
4	Modern Metallic Materials Dual phase steels, Micro alloyed, High strength low alloy (HSLA)	6	15

	steel, Transformation induced plasticity (TRIP) steel, Maraging steel - Intermetallics, Ni and Ti aluminides - Smart materials, shape memory alloys - Metallic glass - Quasi crystal and nano crystalline materials, bio materials		
5	Non Metallic Materials Plastics, rubber, foams, adhesives and coatings - Structure, properties and applications of engineering polymers - Advanced structural ceramics, WC, TiC, TaC, AI ₂ O ₃ , SiC, Si ₃ N ₄ , CBN and diamond - properties, processing and applications.	6	15
6	Composite materials Reinforced fibers, Particle strengthened and laminar composites production techniques of each type, Production of fibers, properties mechanics of composites, manufacturing of metal matrix, Ceramic matrix composite, Carbon-Carbon composite- properties and testing of composite material, areas of application.	8	20

Reference Books:

- 1. Thomas H. Courtney, "Mechanical Behavior of Materials ", McGraw-Hill, 2000.
- 2. Charles J.A., Crane, F.A.A and Furness, J.A.G., "Selection and use of Engineering Materials", 3rd Edition, Butterworth-Heinemann, 1977.
- 3. Flinn, R.A. and Trojan, P.K., "Engineering Materials and their Applications ", (4th Edition), Jaico Publishing, 1999.
- 4. George E. Dieter, "Mechanical Metallurgy ", McGraw Hill, 1988.
- 5. Metals Hand Book, Vol.10, "Failure Analysis and Prevention", (10th Edition), 1994.
- 6. Willam D. Callister, Jr., "Material Science and Engineering: An introduction", John Wiley & Sons, Inc, 2003.
- 7. Willam F. Smith, "Principles of Materials Science and Engineering", 3rd edition, McGraw Hill, 2002.

Course Outcome:

After learning this course, the students would be able to acquire different learning out comes in cognitive, psychomotor and affective manner to demonstrate following course outcomes.

- 1. Understand the elastic and plastic behavior of the material for which it is utilized
- 2. Fracture Behavior of the material
- 3. Proper selection of the material for which it is going to utilize.
- 4. Application of all kind of Industrial Material
- 5. Performing of Metallurgical Effects on Materials

List of Experiments:

- 1. Study of corrosion and its effects.
- 2. Study of microstructure of welded component and HAZ. Macro & Micro Examination.
- 3. Suitable experiment on Magnetic/ Electrical/Electronic materials.

Open Ended Problems:

- 1. To study the effect of strain rate on tensile properties and high cycle fatigue behaviour of if steel
- 2. Investigation of erosion wear of slurry pump material.
- 3. Processing, Microstructure and Properties of Hybrid Metallic and Ceramic Reinforced Aluminium Composites

4. Synthesis & Characterization of Copper-Graphite Metal Matrix Composite by Powder Metallurgy Route

Major Equipments:

Spectrographic measurement instrument