GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS & COMMUNICATION (EMBEDDED SYSTEM) (54) FIRST COURSE IN OPTIMIZATION TECHNIQUES SUBJECT CODE: 2712704 SEMESTER: I

Type of course: Mathematics for the Optimization fundamentals

Prerequisite: Fundamental knowledge of calculus and linear algebra is required

Rationale: This kind of course is required to analyze and formulate any engineering problem that requires optimization of some real life parameters. Such optimization may be a requirement for a research problem as well. Foundation of this course will help students of ME to solve this kind of problems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Pract		tical Marks		Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	0	2	4	70	30	20	10	10	10	150

Content:

Sr. No.	Contents	Total Hrs.	%
			Weightage
1	Introduction to Optimization Mathematical formulation, Classification of optimization problems, Engineering applications of optimization	2	10
2	Classical Optimization Techniques Single variable optimization, Constrained and unconstrained multivariable optimization, Direct substitution method, Lagrange's method of multipliers, Karush-Kuhn-Tucker conditions	6	20
3	Linear Programming Standard form of an LPP, Geometry of LPP, Simplex algorithm, Two phases of the Simplex method, Revised Simplex method, Dual Simplex method, Assignment problem, Transportation problem,	7	20
4	Nonlinear Programming (One-dimensional) Unimodal function, Unrestricted search, Exhaustive search, Dichotomous search, Interval halving method, Fibonacci method, Golden section method, Quadratic interpolation method, Cubic interpolation method, Newton method, Quasi-Newton method, Secant method	8	20
5	Nonlinear Programming (Multidimensional unconstrained) Direct search methods: Random search methods, Grid search method, Univariate method, Hooke and Jeeves method, Powell's method Indirect search methods: Steepest descent method, Fletcher-	8	15

	Reeves method, Newton's method, Test problems		
6	Nonlinear Programming (Constrained)	8	15
	Random search methods, Sequential linear programming,		
	Sequential quadratic programming, Transformation techniques,		
	Basic approach of penalty function methods, Interior and exterior		
	penalty function methods, Test problems+		

Reference Books:

- 1. Engineering Optimization Theory and Practice, S.S.Rao, New Age International (P) Ltd Publishers, Third enlarged edition
- 2. Introduction to Optimum Design, Jasbir S. Arora, McGraw Hill Publication, International edition 1989
- 3. Optimization for Engineering Design Algorithms and Examples, Kalyanmoy Deb, Prentice Hall, Third reprint 1998

Course Outcome:

- 1. To cultivate foundation of Optimization fundamentals.
- 2. To generate mathematical ability to solve optimization problems.
- 3. To understand various algorithms with their comparative study for the utilization of Optimization problem solution.
- 4. To analyze a research problem having requirement of optimization techniques.

List of Experiments:

- 1. Find the maximum and minimum values of the function using the first and second derivatives. Use Symbolic Mathematics Toolbox. Study the functions available in the Optimization Toolbox of MATLAB.
- 2. Find approximately the optimum point of the given linear programming problem graphically. Find the optimum point and optimum function value of a linear programming problem using the standard functions available in the Optimization Toolbox.
- 3. Write a program to minimize a non-linear one-dimensional function with no constraints using Unrestricted Search Method. First take the step size fixed and then take accelerated step size. Also, write a program to minimize a non-linear one-dimensional function with no constraints using Exhaustive Search Method.
- 4. Write a program to minimize a non-linear one-dimensional function with no constraints using Dichotomous Search Method.
- 5. Write a program to minimize a non-linear one-dimensional function with no constraints using Interval Halving Method.
- 6. Write a program to minimize a non-linear one-dimensional function with no constraints using Fibonacci Method.
- 7. Write a program to minimize a non-linear one-dimensional function with no constraints using Golden Section Method.
- 8. Write a program to minimize a non-linear one-dimensional function with no constraints using Quadratic Interpolation Method. Also, write a program to minimize a non-linear one-dimensional function with no constraints using Cubic interpolation Method.
- 9. Write a program to minimize a non-linear one-dimensional function with no constraints using Newton's method, Quasi-Newton Method and Secant Method.
- 10. Write a program to minimize a non-linear multi-dimensional function with no constraints using Univariate Method.

- 11. Write a program to minimize a non-linear multi-dimensional function with no constraints using Hooke and Jeeves' Method.
- 12. Write a program to minimize a non-linear multi-dimensional function with no constraints using Powell's Method.
- 13. Write a program to minimize a non-linear multi-dimensional function with no constraints using Steepest Descent Method.
- 14. Write a program to minimize a non-linear multi-dimensional function with no constraints using Fletcher-Reeves Method.
- 15. Write a program to minimize a non-linear multi-dimensional function with no constraints using Newton's Method.

Open Ended Problems

- 1. Basic knapsack problem
- 2. Set covering problem
- 3. Minimization of Rosenbrock's parabolic valley function
- 4. Minimization of Powell's badly scaled function
- 5. Welded beam problem
- 6. Speed reducer design

Major Equipment:

Personal Computer

List of Software:

MATLAB

Learning website:

www.nptel.ac.in