GUJARAT TECHNOLOGICAL UNIVERSITY

PLASTIC ENGINEERING (24) PLASTICS MOULD & PRODUCT DESIGN SIMULATIONS SUBJECT CODE: 2712408 M.E. 1st SEMESTER

Type of course: Theoretical + Practical (Regular)

Prerequisite: Basic knowledge of elements of engineering graphics, and engineering drawings

Rationale: Design of moulds

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Prace	tical Marks	Marks		
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
4	0	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Injection Mould Design: Introduction: Concept of design – mould design principles – layout of impression - mould venting - mould alignment – mould location – mould clamping. Selection of machines: Specifications of machines – types of machines - shot capacity – shot weight - plasticizing capacity – nozzle details – minimum daylight – maximum daylight – projected area – Injection pressure – Locking force – shut height – ejection arrangement – dry cycle time – methodical approach to mould design - deciding number of impressions – determination of economical no. of cavities. Parting line/Parting surface: Types of parting surface - plain – stepped – irregular – local stepped and profile parting surface – complex edge form. Ejection system: Types of ejection – pin ejection – stepped pin - part pin –"D" pin – blade ejection – sleeve ejection – stripper ejection – air ejection – double ejection – delayed ejection - calculation of ejection force required. Mould temperature control: Types of cooling – Bolster cooling – integral cooling core/cavity – Insert cooling-core/cavity – Baffle cooling – Bubbler cooling – Deep chamber design - spiral cooling – cooling through heat pipes – capillary tubes- heat rods – mould temperature – melt temperature – heat removal rate – calculation of cooling time.	14	30
2	Feed System: Sprue, Runner And Gate – Determination Of Runner-Gate - Size And Cross Section- Layout Of Runners – Balancing Of Runners – Types Of Gates – Application Of Gates To Various Products/Materials – Gate Balancing. Types Of Moulds: Two Plate Mould – Single Impression – Multi Impression – Three Plate Mould – Multi Day-Light Mould – Stack Mould – Runnerless Mould – Hot Runner And Insulated Runner	10	30

r	1	1	
	Mould - Split Moulds – External Undercut – Internal Undercut – Finger Cam, Dog Leg Cam And Cam Track Actuation – Spring - Hydraulic Actuation - Split Cavities – Split Cores – Threaded Inserts – Internal And External – Standard Mould Bases – Calculation Of Strength Of Cavities – Strength Of Guide Pillar And Support Pillar Requirements - Mould Design Check List. Blow Mould Design & Extrusion Die Design Types Of Blow Moulds – Extrusion – Injection And Stretch Blow Moulds – Blow Ratio – Parison Design – Pinch Off Design – Parting Line – Clamping Force – Mould Venting, Mould Cooling – Mould Alignment – Mould Clamping. Extrusion Die Design: Basic Concepts		
3	Compression & Transfer Mould Design: Types Of Compression Mould - Open Flash - Semi-Positive Type - Positive -Displacement Moulds - Types Of Loading Chambers - Bulk Factor - Flash Thickness - Pot Design – Depth Of Loading Chamber Calculation - Projected Area – Compression Pressure - Clamping Force – Deciding No. Of Impression By Technological Method - Heating System - Types Of Heaters - Heat Losses - Heat Requirement & Heater Capacity- Advantages And Disadvantages Of Compression Mould. Types Of Transfer Moulds - Integral Pot Transfer Mould – Top & Bottom Plunger Design - Auxiliary Ram Transfer Mould - Transfer Pot Design - Projected Area – Transfer Pressure - Clamping Force - Pressure Pad Design - Design Of Sprue Runner And Gate – Calculations - Advantages And Disadvantages Of Transfer Mould. Plunger Transfer & Screw Transfer Moulding Techniques – Moulding Cycle – Specification – Merits And Demerits Of Transfer Moulding – Theoretical Calculation Of Pressures – Line Pressure, Injection Ram Pressure – Trouble Shooting.	8	20
4	Plastics Product Design: Concepts – size, shape and function – form and function – Aesthetics, Ergonomics – Shrinkage, Flash lines. Undercuts – External & Internal - Wall thickness – variances in wall thickness – suggested wall thickness for thermoplastics and thermosetting materials – steps in product design - emphasize on designing with engineering plastics - Taper or draft - Fits & Tolerances – Designing with plastics for load bearing applications like gears, bearing, etc. Design of radii, fillets, ribs and bosses - Design for flow and shape -Moulded Holes – through holes – blind holes – threaded holes – side holes – holes parallel to draw – nearness of holes to each other and side wall – moulding holes not parallel to draw – drilled and tapped holes – moulded threads – moulded lettering – surface treatment.	6	10
5	Types of Inserts: – Materials – selection of metal for inserts – minimum wall thickness of material around inserts – anchorage – relieving moulding stresses around inserts – location of inserts in the part – moulded in inserts – pressed in inserts -Design of integral hinges, hinges and snap fits for boxes and assembly of moulded parts – Designed mismatch for part assembly. Quality and economy – tooling aspects on product design – process variables vs product design – product design appraisal - Product design limitations – shrinkage vs tolerance –end use requirements with case studies – product design tips - prototype development – rapid prototyping techniques – stereo lithography.	4	10

Reference Books:

- 1. R.G.W. PYE, Injection Mould Design for Thermoplastic, Affiliater East-West Press P. Ltd., New Delhi, 1989.
- 2. Fischer (EG), Blow moulding of plastics, Newnus Butter Worths, London, 1976.
- 3. MV Soshi, Dies for Plastics Extrusion, S.G. Wasant for Macmillan India Ltd., Madras, 1992.
- 4. DYM, Injection Mould Design, Van Nostrand Reinhold Company, New York, 1987.
- 5. Neil L. Hancox, Design Data for Reinforced Plastics, Chapman & Hall, London, 1994.
- 6. Beck, Plastic Product Design, Yan Nostrand Reinhold Company, London, 1970.
- 7. Norman Lee, Blow Mould Design, Hanser Publishers, Munich, 1998

Course Outcome:

After learning the course the students should be able to: designing of mould in order to develop traditional as well as new article/product. Learn details of moulds and its geometry

List of Experiments:

1	Ejection system	
2	Cooling system	
3	Feed System	
4	Compression mould	
5	Transfer mould	
6	Concept of Product design & steps	
7	Rapid prototyping techniques	
8	Types of molds for injection moulding	

Open Ended Problems:

- 1. Calculations to determine number of cavities and runner balancing system in mould.
- 2. Design two plate mould
- 3. Design three plate mould
- 4. Design the runner less mould
- 5. Design the compression mould- flash type, positive and semi-positive type mould
- 6. Design of transfer mould.

Major Equipments: to manufacture mould following machineries are major used.

Lathe and CNC Lathe, Milling and CNC Milling, Drilling machine, Grinding machine, Polishing Machine, EDM, Wire cut EDM,