GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL (STRUCTURAL ENGINEERING) MATRIX METHODS OF STRUCTURAL ANALYSIS SUBJECT CODE: 2712001

SEMESTER: I

Type of course: Core

Prerequisite: Mechanics of Solids, Structural Analysis and Matrix Algebra

Rationale: In the present era of computerization, it has become necessary to recognize the theory of structures into a more systemic form that is valid for all types of structures and can be more easily programmed for a digital computer. For such a systematic approach using computer, use of matrices is natural because they permit large groups of numbers to be manipulated in a simple and effective manner. In light of above, the course on *Matrix Methods of Structural Analysis* provides the students a clear understanding of the structural response and help for preparing their own programs for analysis of skeletal structures or to learn how that is done.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	T	P	C	Theo	ry Marks		Prace	tical Marks	Marks	
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Introduction: Principles of Virtual work, Basic concepts of flexibility and stiffness.	01	1
2	Flexibility Member Approach: Analysis of Continuous beam, Plane truss, Plane frame and Grid.	10	25
3	Stiffness Member Approach: Analysis of Continuous beam, Plane truss, Plane frame, Grid, Space truss, Space frame and Composite structures including secondary effects such as Temperature variations, Pre-strains and Restrained displacement; Programming direct stiffness method.	20	50
4	Special Problems: Member discontinuities, Non-prismatic members, curved members, beams on elastic supports, semi-rigid connections, effect of shear deformations by stiffness method, Sub-structure analysis and symmetry concepts.	08	20
5	Introduction to Non-linearity in structure and non-linear analysis.	03	05

Reference Books:

- 1. Matrix Analysis of Framed Structure Weaver W. and Gere J. M., CBS Publishers, Delhi.
- 2. Structural Analysis Ghali & Nevelle, Spon Press, London.
- 3. Matrix Analysis of Structures Aslam Kassimali, Cengage Learning, USA.

- 4. Elementary matrix analysis of structures H. Kardestuncer, Mc-Graw Hill, USA.
- 5. Matrix Analysis of Structures Meghre & Deshmukh, Charotar Publication, Anand.
- 6. Computer Methods of Structural Analysis Beaufait, Rowan, Hadley and Heckett
- 7. Linear Analysis of Frame works Graves Smith
- 8. Computer Analysis of Structural Systems Fleming J.F
- 9. Matrix Structural Analysis McGuire, Gallagher, and Ziemian, John Wiley & Sons, Inc. 2000

Course Outcome:

After learning the course the students should be able to:

- 1. Analyse framed structures using flexibility and stiffness method,
- 2. Develop computer programs for analysis of framed structure,
- 3. Use effectively commercial software for analysis and design of structures
- 4. Analyse structure having member discontinuities, curved members, non-prismatic members, elastic supports, semi-rigid connections etc.

List of Experiments/Tutorials:

- 1. Minimum 15 problems from above topics along with cross checking using any open-source / professional software.
- 2. Modelling and analysis of at least one real-life structure using open-source/professional software.

Open Ended Problems:

Apart from above tutorials/experiments a group of students has to undertake one open ended problem/design problem. Few examples of the same are given below.:

- 1. Development of computer programme for the analysis of planner and space skeletal structure.
- 2. Development of front end and back end for the computer programme developed as mentioned above.
- 3. Modelling and analysis of real-life structure using open-source/professional software

Major Equipments: --

List of Open Source Software/learning website:

www.mastan2.com/

www.scilab.org/

http://nptel.ac.in/

http://ocw.mit.edu/courses/civil-and-environmental-engineering/