GUJARAT TECHNOLOGICAL UNIVERSITY

ENVIRONMENTAL MANAGEMENT (18) WATER & WASTEWATER TECHNOLOGIES SUBJECT CODE: 2711808 SEMESTER: I

Type of course: Engineering and Technology

Prerequisite: Student shall have studied basics of water & wastewater engineering

Rationale: To provide knowledge related to the requirement of water and wastewater treatment technologies and its design

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Practical Marks				Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	3	10	10	10	150

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Introduction: Characteristics of Water & Wastewater, Basis of Permissible	4	10
	Limits, Interpretation of Analysis Report of Water, Wastewater, Sludge and		
	Soil.		
2	Quantities of Water and Waste Water Flows, Water Requirements for	4	10
	Domestic and Industrial Purposes, Wastewater Formation, Spectrum of		
	Particle Size Distribution, Variation in Flows and Particle Sizes.		
3	Theory of Discrete Particle Settling Stock's Law Applied to Fluids, Design	4	10
	Settling Tanks, Efficiency of Sedimentation Units, Types of Sedimentation		
	Tanks.		
4	Coagulation - Flocculation: Colloids and Their Stability, Mechanisms of	4	10
	Destabilization, Limitations, Mechanical & Hydraulic Flocculation,		
-	Coagulation Agents and Their Recycling.		10
5	Filtration: Flow Through Process Media, Mechanisms of Filtration	4	10
	Dominant, Mechanisms for a Particular Size, Hydraulics of Filtration, Filter		
	Clogging, Filter Washing, Types of Filter and their Flow Directions Break		
	Through.		
6	Physico – chemical removal of dissolved, organics, sorption mechanisms and	4	10
	isotherms, estimation of sorbent requirements		10
7	Biological Parameters: Biological Method of Analysis, Parameters	4	10
	Affecting BOD, BOD Equation, Methods of Estimating BOD,COD		
	Procedures		
8	Treatment Kinetics: Zero, First, Second Fractional and Executive Order	5	10
	Reactions in Biological Treatment, Time and Temperature Effects.		
9	Reactor Design: Kinetics of Oxic Treatment CSTR and Plug Flow Reactors,	4	10

	Mathematical Models for Fixed Film and Suspended Growth Reactors,		
	Evaluation of Treatment Systems.		
10	Microbiology Of Anoxic Process: Optimal Anoxic Environment, Kinetic	5	10
	Constants, Stuck Reactors, Problems, High Rate and Multistage Anoxic		
	Digesters, Concept and Use Of UASB, UAF and Hybrid Filters.		

Reference Books:

- 1. Wastewater Engineering, Treatment and Reuse by Metcalf and Eddy, Tata McGraw- Hill Publication, New Delhi, 2003
- 2. Water & Waste Water Engineering by Fair and Gayer.
- 3. Introduction to Environmental Engineering by Mackenzie
- 4. Physicochemical processes for water quality control by Weber, W.J., John Wiley and sons, Newyork, 1983.
- 5. Environmental Engineering by Peavy, H.S., Rowe, D.R. and Tchobanoglous, G., McGraw Hills, New York 1985.
- 6. Water Quality and Treatment (A handbook of community water supplies 5th edition): Published by American Water Works Association.

Course Outcome:

On completion of this course you will also be able to:

- Recognise and define the quality parameters typically used to characterize wastewater
- Describe various types of process units used for preliminary and primary treatment, e.g. screening, equalisation, primary settling and explain their functions
- Describe and explain how biological wastewater treatment removes pollutants
- Describe various biological wastewater treatment processes and recognise pros and cons of each process
- Explain the principles of the suspended and attached growth biological processes and the factors that influence and control these processes
- Recognise emerging technologies for advanced wastewater treatment and water recycling
- Design a disinfection process in terms of contact time and chemicals usage
- Discuss wastewater treatment excess sludge handling, treatment, disposal and biosolids applications
- Draw schematics of typical water and wastewater treatment plants.

List of Experiments: ---

- 1. Introduction to Standards, collection and preservation of samples, sampling techniques and laboratory equipment
- 2. Physical Parameters of water & wastewater quality like turbidity, conductivity, colour and odour etc.
- 3. Major Chemical Characteristics of water & wastewater like Solids, DO, Chlorides, Hardness, Acidity, Alkalinity, etc. using most modern instruments
- 4. Major Biological parameters of water using Presumptive, confirmative and completed test using appropriate culture media and microscope
- 5. Experimentation based on Optimum doses required for different field condition turbidity
- 6. Experiment on BOD and COD of water and wastewater
- 7. Model of water & wastewater treatments

Design based Problems (DP)/Open Ended Problem:

• Design of Screens, Sedimentation tank, Clariflocculator, Oxidation Ponds, Activated Sludge Process, Trickling Filter, Sludge Digesters, Sludge Drying Beds etc.

Major Equipments:

- Jar Test Apparatus
- Titration Apparatus
- pH meter
- Conductivity Meter
- Hot Air Oven
- BOD Incubator
- Dissolved Oxygen Meter
- Turbidity meter
- Miscroscope
- Autoclave

List of Open Source Software/learning website:

- http://nptel.ac.in/
- http://elearning.vtu.ac.in/