GUJARAT TECHNOLOGICAL UNIVERSITY

CHEMICAL ENGINEERING (COMPUTER AIDED PROCESS DESIGN) (16) COMPUTERISED PROCESS CONTROL (CPC) SUBJECT CODE: 2711603 SEMESTER: I

Type of course: Core-I (M.E.CAPD)

Prerequisite: --

Rationale: --

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks	Practical Marks			Marks	
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics		Module Weightage
1	Industrial Automation:	6	10
	plant automation concepts, Distributed computer control.		10
2	Computers and Interfacing :		
	Introduction to Computers, Computer interfacing for data acquisition		10
	and control, Data acquisition and control by using std. add-on-cards.		
3	The Control of Chemical Process:		10
	Characteristics and Associated Problems, Incentives for chemical	6	
	process control, Design aspects and Hardware for a process control		
	System. Distributed Disitel Control Systems :		
	Advantages of DCC Process control requirements of computers		
	Computer network - multi-mini computer architecture peer-to-peer and		10
	server based networks network topology network adapter card	6	
	software: Selection of a suitable DICS. Interconnection of networks.	0	
	Communication in distributed control systems. Logical topology.		
	Ethernet card, Selection of operator interface, ERP and process control.		
5	Examples of Experimental Computer Control of Processes:		
	Computer Control of liquid level system, a heat exchanger, a fed batch	C	10
	fermentor, Temperature Control for plastic injection molding processes,	0	
	On-line optimizing control of a distillation column.		
6	Control System & Controllers:		15
	Dynamic Behavior First Order Control Systems, Multicapacity Control	_	
	Systems, Analysis of Dynamic Behavior of Second Order Control	6	
	Systems, Block Diagram Algebra, Mechanism of Controllers and		
	Control Valve, Dynamic Behavior of Controllers.		
7	Stability Analysis of Control Systems : Stability for linear system, Routh-Hurwitz stability criterion,	6	10

	Limitations of the Routh test for stability, Root Locus diagram, Method of plotting the Root Locus diagram for negative feedback system.		
8	Design of Control Systems using Frequency Response : Frequency response of a first order system, Bode diagram, Bode diagram of first order system, First order systems in series, Bode diagram of second order system, Proportional controller; Bode diagrams for proportional derivative controller, proportional integral controller, proportional- integral-derivative controller & transportation lag parameter; The stability criterion, Phase and gain margins, Ziegler-Nichols optimum controller settings, Limitations of the Ziegler-Nichols method.	6	15
9	Concepts of Measurement and Measuring Instruments : Introduction, System configuration, Problem analysis, Basic characteristics of measuring devices, Calibration, Transducers and various Measuring Instruments for Process Control.	6	10

Reference Books:

- 1. Process Control Instrumentation Technology : Curtis Johnson, Prentice Hall India Pvt. Ltd.
- 2. Computer Control of Processes : M. Chidambaram, Narosa Publishing House
- 3. Process Control and Instrumentation : Prof. R. P. Vyas, Central Techno Publications, Nagpur
- 4. Chemical Process Control: George Stephanopoulos, Prentice Hall India Pvt. Ltd.
- 5. Process Instrumentation and Control : A. P. Kulkarni, Nirali Prakashan
- 6. Instrumentation Devices and Systems : C S Rangan, G R Sarma, V S V Mani; Tata McGrawhill

Course Outcome:

After learning the course the students should be able to:

- 1. Learn the Computer-based plant automation concepts.
- **2.** Understand the Distributed computer control.
- 3. Design aspects and Hardware for a process control system.
- 4. Data acquisition and control by using std. add-on-cards.
- 5. Architect Computer network multi-mini computer, peer-to-peer and server based networks, network topology, network adapter card.
- 6. Optimize the control of a distillation column.
- 7. Analyze Dynamic Behavior of Controllers.
- 8. Develop the method of plotting the Root Locus diagram for negative feedback system.
- 9. Configure the methods for measuring Instruments for Process Control.

List of Experiments:

Tutorials/Presentation/Practicals based on above topics.

Open Ended Problems:

- 1. Controller & Controlled Systems.
- 2. Non Linear Model Predictive Control of a High Purity Distillation Column.
- 3. Feedback Controller

Major Equipments:

Control Valve Characteristics, Temperature Control Trainer, Level control trainer, Interacting & Non Interacting system.

List of Open Source Software/learning website:

- www.mathworks.com/discovery/control-design-software.html
- www.eurotherm.com/products/
- www.ualberta.ca/CMENG/StudentGroups/ChESS/.../CPC%20Handout.pd...
- www.che.ttu.edu/pcoc/software/ppt_06/Chap01.PPT