GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRICAL ENGINEERING (07) INSTRUMENTATION SUBJECT CODE: 2710712 SEMESTER: I

Type of course: Post Graduate

Prerequisite: NA

Rationale:

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	ry Marks		Prac	tical Marks	Marks	
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2	2	5	70	30	20	10	20	0	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	DATA ACQUISITION SYSTEMS: Overview of A/D converter, types and characteristics – Sampling , Errors. Objective – Building blocks of Automation systems –Counters – Modes of operation- Frequency, Period, Time interval measurements, Prescaler, Heterodyne converter for frequency measurement, Single and Multi channel Data Acquisition systems.	9	20
2	INTERFACING AND DATA TRANSMISSION: Data transmission systems – 8086 Microprocessor based system design – Peripheral Interfaces – Time Division Multiplexing (TDM) – Digital Modulation – Pulse Modulation – Pulse Code Format – Interface systems and standards – Communications	9	20
3	INSTRUMENTATION BUS Introduction, Modem standards, Basic requirements of Instrument Bus standards, Bus communication, interrupt and data handshaking, Interoperability, interchangeability for RS-232, USB, RS-422, RS-485.	9	20
4	PARALLEL PORT BUSES Field bus, Mod bus, GPIB, IEEE-488, VME, VXI, Network buses – Ethernet – TCP/IP protocols; CAN bus- basics, Message transfer, Fault confinement	9	20
5	CASE STUDIES PC based DAS, Data loggers, PC based industrial process measurements like flow, temperature, pressure and level development system, CRT interface and controller with monochrome and colour video display	9	20

Reference Books:

1. A.J. Bouwens, "Digital Instrumentation", TATA McGraw-Hill Edition, 1998.

- 2. H S Kalsi, "Electronic Instrumentation" Second Edition, Tata Mc GrawHill 2006.
- 3. Joseph J. Carr, "Elements of Electronic Instrumentation and Measurement" Third Edition, Pearson Education, 2003.
- 4. Buchanan, "Computer busses", Arnold, London, 2000.
- 5. Jonathan W Valvano, "Embedded Microcomputer systems", Asia Pvt. Ltd., Brooks/Cole, Thomson, 2001.
- 6. S. K. Singh, "Industrial Instrumentation and Control", TATA McGraw-Hill. 2004
- 7. N. Mathivanan, "PC-Based Instrumentation", PHI, 2009

Course Outcome:

After learning the course the students should be able to

- 1. Use A/D and D/A convertors and Data Acquisition System
- 2. Understand the different communication protocols
- 3. Carry out interfacing using USB ports and different networks medium
- 4. Carry out the industrial application .

List of Experiments:

- 1. To study the A/D and D/A convertors and it's characteristics
- 2. To study the Data Acquisition System
- 3. To study Interfacing of DC motor with microprocessor and microcontrollers
- 4. To study the modulation technique
- 5. Read the sensor data using RS-232, USB, RS-422, RS-485
- 6. To study the characteristics of Ethernet, Field bus and CAN bus
- 7. Case study of various industrial instrumentation applications
 - a. Temperature measurement
 - b. Flow measurement
 - c. Speed measurement

Open Ended Problem:

To design a Multiple Sensors Data Monitoring Networked System with Open Source Tool using DAQ system and Arduino Due board.

List of Open Source Software/learning website:

http://nptel.iitm.ac.in/coursecontents_elec.php ocw.mit.edu/courses/electrical.../6-334-power-electronics-spring-2007