GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRICAL ENGINEERING (07) ADVANCED POWER SYSTEM PROTECTION AND SWITCHGEAR SUBJECT CODE: 2710707 SEMESTER: I

Type of course: Engineering

Prerequisite: Fundamentals of Power System; Basics of Generation, Transmission and Distribution Systems, Operation of various equipments used in Power System

Rationale: The protection of power system is very important for its reliability and stability point of view. It is very important to cut / remove unhealthy part of the system during fault / or abnormal condition without affecting normal functions in remaining part of the system. A fast detection and speedy removal of fault is very important for system stability but at the same unwanted tripping may create unwanted problems and disturbance in system. A new algorithm and advance technology for protection of system is incorporated in the syllabus.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theor	ry Marks		Prace	tical Marks		Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2	2	5	70	30	20	10	20	0	150

Content:

Sr.	Topics	Teaching	Module
No.	Τυρκο	Hrs.	Weightage
1	Introduction to Digital Relays		
	Comparison of digital relays with previous generation relays, Basic		
	Components of Digital Relays with block diagram, Signal Conditioning		
	Subsystems, Surge Protection Circuits, Anti aliasing filter, Conversion		
	Subsystem, The Sampling Theorem, Sample and Hold Circuit, Concept		
	of analog to digital and digital to analog conversion, Idea of sliding		
	window concept, introduction to intelligent electronic device (IED),		
	Different relay algorithms such as algorithms for pure sinusoidal		
	relaying signal, algorithm based on solution of system differential		
	equations, Fourier analysis based half cycle and full cycle algorithm.		
	Coordination of Inverse Definite Minimum Time		
	(IDMT)/Directional Over Current (DOC) Relays in an		
	Interconnected Power System Network		
4	Protection of an interconnected system, Link net structure, Flowchart of		
	Primary/Backup relay pairs, Flowchart of Time Multiplier Setting.		
	Examples based on existing power system network		
3	Wide Area Protection and Measurement		
	Definition of wide-area protection, Architectures of wide-area		
	protection, concept of synchronized sampling, wide area phasor		
	measurement technology, concept of Adaptive relaying, advantageous		
	of adaptive relaying and its application		
4	Auto-reclosing and Synchronizing		

	Introduction, history of auto-reclosing, advantageous of auto-reclosing,	
	classification of auto-reclosing, auto-reclosing based on number of	
	phases, auto-reclosing based on number of attempts, auto-reclosing	
	based on speed, Sequence of events in single-shot auto-reclosing	
	scheme, factors to be considered during reclosing such as choice of	
	zone in case of distance relay, dead time, reclaim time, instantaneous	
	trip lockout, intermediate lockout, breaker supervision function,	
	Synchronism check, phasing voltage method, angular method,	
	automatic synchronization	
5	System Response during Severe Upsets	
	Introduction, Nature of system response to severe upsets such as system	
	response to Islanding conditions, Under generated islands, Over	
	generated islands, Reactive Power Balance, Power Plant Auxiliaries,	
	Power System Restoration, Load Shedding, Factors to be considered for	
	load shedding scheme such as maximum anticipated overload, number	
	of load shedding steps, size of load shed at each step, frequency setting,	
	time delay, rate of frequency decline, frequency relays, Issues with	
	islanding and methods of islanding	
6	Protection of Series Compensated Transmission Line	
	Introduction, The Degree of compensation, basic components of series	
	compensated transmission lines. Voltage Profile of Series Compensated	
	Line, Faults with Unbypassed Series Capacitors, Protection problems	
	such as Voltage Inversion Current Inversion	
	Overreaching/Underreaching of distance element	

Reference Books:

- 1. Bhavesh Bhalja, R. P. Maheshwari and N. G. Chothani, "Protection and Switchgear," Oxford University Press, New Delhi, India, 2011.
- 2. P. M. Anderson, Power System Protection, IEEE Press, New York, 1999.
- 3. A. T. Johns and S. K. Salman, "Digital Protection for Power Systems," Peter Peregrinus Ltd, UK, 1995.
- 4. S. H. Horowitz and A. G. Phadke, "Power System Relaying," John Wiley & Sons, New York, 1996.
- 5. W. A. Almore, "Protective Relaying Theory and Applications," Marcel Dekker Inc; New York, 1994.
- 6. J. L. Blackburn, "Applied Protective Relaying," Westinghouse Electric Corporation, New York, 1982.
- 7. Van C. Warrington A. R. "Protective Relays: Their Theory and Practice,", Vol 1, Chapman & Hall Ltd, London, 1962.
- 8. A. G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems," Research study press Ltd, John Wiley & Sons, Taunton, UK, 1988.

Course Outcome:

After learning the course the students should be able to

- 1. Analyze the tripping characteristics of various relays and its applications. Design inductors and transformers for power electronic converters
- 2. To operate various static relays, set their parameters and also to confirm its operations.
- 3. To operate various Numeric relays, set their parameters and also to confirm its operations.

List of Experiments:

- **1.** Study of digital relays with detailed description of each component of the schematic diagram of digital relay
- 2. Setting up IDMT relays for a radial feeder
- 3. Setting up IDMT/DOC relays for a power system using link net structure
- 4. Study of auto-reclosing with related details
- 5. Study of system response during severe upset and power system restoration
- 6. Study of load shedding schemes with all related details
- 7. Study of protection of transmission line which is compensated by fixed series capacitors.
- **8.** Simulation of fixed series capacitor compensated transmission line for fault at various location to explain the phenomena of current inversion and voltage inversion

Open Ended Problem:

Major Equipments:

List of Open Source Software/learning website:

http://nptel.iitm.ac.in/coursecontents_elec.php ocw.mit.edu/courses/electrical.../6-334-power-electronics-spring-2007