GUJARAT TECHNOLOGICAL UNIVERSITY

INSTRUMENTATION AND CONTROL (APPLIED INSTRUMENTATION) (03) INTELLIGENT SYSTEMS AND CONTROL SUBJECT CODE: 2710312 SEMESTER: I

Type of course: Core II

Prerequisite: CONTROL ENGINEERING

Rationale: This course provides an overview and fundamentals of intelligent systems (Neural Networks and Fuzzy logic)), which includes a wide range of real time engineering applications. Also covers intelligent auto tuning of controller with evolutionary techniques, Fuzzy-PID controls, hybrid systems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theor	ry Marks		Prace	tical Marks		Marks
				ESE	PA (M)	PA (V)		PA (I)		
				(E)		ESE	OEP	PA	RP	
3	2#	2	5	70	30	20	10	10	10	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	INTRODUCTION: Motivation, Neural Networks, Rationale for Using NN in Engineering, Fuzzy Logic Control, Rationale for Using FL in Engineering, Evolutionary Computation, Hybrid Systems	04	2%
2	FUNDAMENTALS OF NEURAL NETWORKS: Introduction, Basic Structure of a Neuron, Model of Biological Neurons, Elements of Neural Networks, Weighting Factors, Threshold, Activation Function, ADALINE, Linear Separable Patterns, Single Layer Perceptron, General Architecture, Linear Classification. Perceptron Algorithm, Multi-Layer Perceptron, General Architecture, Input-Output Mapping, XOR Realization	05	8%
3	NEURAL NETWORK ARCHITECTURES: Introduction , NN Classifications, Feedforward and feedback networks, Supervised and Unsupervised Learning Networks, Back Propagation Algorithm, Delta Training Rule, Radial Basis Function Network (RBFN), Training of the Kohonen Network, Examples of Self-Organization, Hopfield Network	06	15%
4	INTRODUCTION TO FUZZY SETS: BASIC DEFINITIONS AND RELATIONS Introduction, Classical Sets, Classical Set Operations, Properties of Classical Sets, Fuzzy Sets, Fuzzy Membership Functions, Fuzzy Set Operations, Properties of Fuzzy Sets, Alpha-Cut Fuzzy Sets, Extension Principle, Classical Relations vs. Fuzzy Relations	05	10%
5	INTRODUCTION TO FUZZY LOGIC: Introduction, Predicate Logic, Tautologies, Contradictions, Deductive Inferences, Fuzzy Logic, Approximate Reasoning	02	10%
6	FUZZY CONTROL AND STABILITY: Introduction, Basic Definitions, Inference Engine, Defuzzification, Fuzzy Control Design,	06	15%

	Analysis of Fuzzy Control Systems, Stability of Fuzzy Control		
	Systems, Lyapunov Stability, Stability via Interval Matrix Method		
7	INTELLIGENT AUTO TUNING OF PID CONTROLLLER: Process Reaction Curve and Relay Methods Identification and PID Tuning, Introduction, Developing Simple Models from the Process Reaction, Identification Algorithm for Oscillatory Step Responses, Identification Algorithm for Non-Oscillatory Responses Without Overshoot, Developing Simple Models from a Relay Feedback Experiment, On-line Identification of FOPDT Models, On-line Identification of SOPDT Models, Examples for the On-line Relay Feedback Procedure, Off-line Identification, An Inverse Process Model-Based Design Procedure for PID Control, Inverse Process Model-Based Controller Principles, PI/PID Controller Synthesis, Auto tuning of PID Controllers, Assessment of PI/PID Control Performance, Achievable Minimal IAE Cost and Rise Time, Assessment of PI/PID Controllers	06	25%
8	FUZZY LOGIC AND GENETIC ALGORITHM METHODS IN PID TUNING : Introduction, Fuzzy PID Controller Design , Fuzzy PI Controller Design, Fuzzy D Controller Design , Fuzzy PID Controller Design, Fuzzification, Fuzzy Control Rules, Defuzzification, A Control Example, Multi-Objective Optimised Genetic Algorithm Fuzzy PID Control , Genetic Algorithm Methods Explained , Case study A: Multi- Objective Genetic Algorithm Fuzzy PID Control of a Nonlinear Plant, Case study B: Control of Solar Plant	06	15%

Reference Books:

- 1. Intelligent Control Systems Using Soft Computing Methodologies by Ali Zilouchian and Mo Jamshidi, CRC Press.
- 2. Principles of Soft Computing by S.N.Sivanandam, S.N.Deepa, 2e, Wiley India Pvt.Ltd.
- 3. **PID Control New Identification and Design Methods** by Michael A. Johnson and Mohammad H. Moradi, Springer
- 4. Artificial Intelligence and Intelligent Systems by N.P.Padhi, Oxford University Press.
- 5. **PID controllers: theory, design, and tuning** *by* Karl J. Astrom and Tore Hagglund Instrument Society of America (ISA)
- 6. NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM: SYNTHESIS AND APPLICATIONS by <u>S. RAJASEKARAN, G. A. VIJAYALAKSHMI PAI</u>, PHI Learning Pvt. Ltd

Course Outcome:

After learning the course the students should be able to

- 1. Understand the structure of Neural Networks and learning algorithms.
- 2. Implement ANN based Intelligent system for real time engineering application.
- 3. Understand and implement the structure of a fuzzy PID controller and its components.
- 4. Understand how the concepts of Fuzzification and Defuzzification are used in a fuzzy PID controller.
- 5. Understand how to create a PID controller using genetic algorithms concepts.
- 6. Appreciate the potential performance benefits of these intelligent systems and controllers by looking at the results from several industrial applications

List of Experiments:

Student has to prepare computer programs and simulations for various intelligent soft computing techniques covered in this course with any computing tools (C, C++, Java, MatLab, Scilab, etc...).

Prepare research paper and submit report by using intelligent soft computing techniques covered in this course for any engineering problems

Open Ended Problem: Solution of the open ended problem(s) in guidance of course instructor is mandatory. Few of the problems are specified as under.

- 1. Design and implementation of intelligent system for industrial process control and Industrial drives control application.
- 2. Design and implementation of intelligent system for Research Activity in Medicine and Biological Sciences.
- 3. Design and implementation of intelligent system in Cancer Research
- 4. Design and implementation of intelligent system for Biosignal Detection, processing Correction.
- 5. Design and implementation of intelligent system for Decision-making in Medical Treatment Strategies.
- 6. Design and implementation of intelligent system for image processing in vision control.
- 7. Design and implementation of intelligent system for data communication and networking

Major Equipment:

Computer Laboratory

List of Open Source Software/learning website:

- Scilab, C, C++, Java
- NTPEL