GUJARAT TECHNOLOGICAL UNIVERSITY BIOMEDICAL ENGINEERING (03) ELECTRONICS SYSTEM DESIGN SUBJECT CODE: 2180308

B.E. 8th Semester

Type of course: Department Elective - I

Prerequisite: Analog circuits, electronics workshop, Circuit & Network

Rationale: This subjects covers basics concepts of power electronics & Electromagnetic compatibility and their issues. Contents of subjects is selected on the basis of real field requirements of biomedical design related projects.

Teaching and Examination Scheme:

Teaching S	Schen	ne	Credits	Examination Ma			larks			
				Theory I	ry Marks		Practical M		Aarks	Total
L	T	P	C	ESE	PA (M)		PA (V)		PA (I)	Marks
				(E)	PA	ALA	ESE	OEP	PA (1)	
4	0	2	6	70	20	10	20	10	20	150

Content

Sr.	Content	Total	%
No.		Hrs.	Weightage
1	Electro mechanical energy conservation: Principle of electro mechanical	05	14
	energyconservation, Use of magnetic for energy conservation, Analysis of		
	simple magnetic circuit, Magnetic system with mechanical motion,		
	Electromagnetic & Solid staterelay, Case study; Solenoid design, Servo		
	motor construction and application		
2	Step motor: PM, VR & hybrid Step motor, its construction, its relative merits	04	10
	anddemerits. Static & dynamic torque speed characteristics, Half step &		
	micro stepping.		
3	Power Electronics: Overview, Types of Power Diodes, Diodes with various	08	20
	Loads, Freewheeling Diodes, and Performance Parameters of Rectifiers,		
	Power BJTs, Power MOSFETs, IGBTs, MOSFET Gate and BJT BaseDrive		
	Circuits, Isolation of Base & Gate Drive Circuits.		
4	Thyristor: Characteristics, Two Transistor model of Thyristor, Thyristor	06	15
	Turn-On, Thyristor Turn-Off, Types of Thyristors, Series & Parallel		
	Connections of Thyristors & Gate drive circuits.		
5	Inverters: Principal of Operation of Pulse Width Modulated Inverters,	06	15
	PerformanceParameters, Single Phase Bridge Inverters, Current Source		
	Inverter, Series ResonantInverter, Parallel Resonant Inverter, Class E		
	Resonant Inverter, Multilevel InverterConcept, Applications & features of		
	Multilevel Inverter.	0.6	1.0
6	Converters: Principal of Step Down Converter, Principle of Step UP	06	10
	Converter, Performance Parameters, Converter Classification, Switch Mode		
<u> </u>	Buck, Boost and Buck-Boost Regulators, UPS as AC Power Supply.	10	4.5
7	Electromagnetic Compatibility: Grounding: Introduction, Safety grounds,	10	16
	Signal grounds, Common Impedance coupling, Hybrid grounds and ground		

loops. Cabling: Effect of shield on capacitive coupling, Effect of shield on		
Magnetic coupling, Co-axial cable vs twisted pair cable. Balancing &		
Filtering: Balancing, filtering, Power Supply decoupling.	Į ,	

Reference Books:

No.	Title of Books	Author	Publication
1	Power Electronics Circuits, Devices and	Rasid, Muhammad, H.	PHI &
	Applications, 3rd Edition.		Pearson Education
2	Power Electronics	Singh., M., D.,	TMH Publications
		&Khanchandani, K., B.	
3	Power Electronics	Asghar, Jamil, M. S.,	PHI Publications
4	Electromagnetic Compatibility Engineering,	H W Ott, John Wiley &	John Wiley & Sons,
		Sons,2009	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level		
10%	35%	30%	15%	10%		

Course Outcome:

After completion of course students will be able to

- 1. Apply the principal of electromechanical energy conservation.
- 2. Classify and justify need of various types of step motor.
- 3. Apply various power electronics devices
- 4. Understand principal and operation of various Inverters and converters.
- 5. Understand need and effects of shielding, Grounding on circuits.

List of Experiments:

		Planned Hours
1	To study SCR Characteristics	02
2	To study various SCR Turn ON methods	02
3	To study Forced Commutation Circuit Class A,B,C,D,E	02
4	To study Switching Characteristic of Power MOSFET	02
5	To study operation of Single Phase Series Inverter	02
6	To study operation of Single Phase Parallel Inverter SCR Control	02
7	To study crosstalk controlling- Frequency/time domain perspectives.	02
8	To study RF spectrum of radiated source (like motor) is ON and OFF using	02
	RF analyzer	

Design based Problems (DP)/Open Ended Problem: as per topics of syllabus.

Active Learning Assignments: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding of theory and practical work. The faculty will assign topics from which students can grasp knowledge about current scenario of the virtual biomedical Instrumentation. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.