GUJARAT TECHNOLOGICAL UNIVERSITY NANO TECHNOLOGY SUBJECT NAME: SPINTRONICS SUBJECT CODE: 2173902 B.E. VII SEMESTER

Type of course: Physics of Material Science, microelectronics and VLSI, Nanotechnology and Electronics Devices

Prerequisite: Physics of Nanomaterials, microelectronics and VLSI, Coating Technology and Nano thin film devices

Rationale: To make the students understand the newly developed devices and its operation. **Teaching and Examination Scheme:**

Teaching Scheme Cred			Credits	Examination Marks				Total Marka		
L	Т	Р	С	Theor	Theory Marks Practical		Practical I	Marks	Iviai KS	
				ESE	PA (M)		PA(V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	0	3	70	20	10	0	0	0	100

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning;

Content:

Sr. No.	Content		% Weightage
		Hrs.	
1	INTRODUCTION:		23%
	The Early History of Spin, Quantum Mechanics of Spin, Spin – Orbit interaction, Spin – Orbit interaction of Solids	15	
2	BASIC ELECTRON TRANSPORT:		30%
	Basic Electron Transport, Basic Electron Transport in thin film,		
	Conduction in Discontinuous film, Magnetoresistance, Spin-	19	
	Dependent Scattering, Giant Magneto Resistance, Spin Dependent		
	Tunneling, Tunnel Magnetoresistance.		
3	MAGNETIC DOMAIN WALLS AND ITS DYNAMICS		19%
	Ratchet effect in domain wall motion, Domain Wall Motion,		
	Domain Wall Scattering.	12	
4	SPIN TRANSISTOR		16%
	Silicon based spin electron device, Spin LED: Fundamental and		

	Application, Spin photo electronics Devices	10	
5	SPIN EFFECTS IN QUANTUM DOTS Charge and spin in single quantum dots, Constant interaction model, Spin and exchange effect, Controlling spin states in single quantum dots	8	12%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
Remembrance R Level	Understanding U Level	Application A Level	Analyze N Level	Evaluate E Level			
17	32	21	0	0			

Legends: R: Remembrance; U = Understanding; A = Application and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. INTRODUCTION TO SPINTRONICS CRC Press S. Bandyopadhyay, M. Cahay
- 2. ADVANCED MAGNETIC NANOSTRUCTURES SpringerPublished by D. J. Sellmyer, R. Skomski.
- **3. CONCEPTS IN SPIN ELECTRONICS** Oxford University Press by S. Maekawa.
- 4. SPIN ELECTRONICS

D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.V. Molnar, and M.L. Roukes, Spin Electronics, Kluwer Academic Publishers, 2004.

5. SPINTRONIC MATERIALS AND TECHNOLOGY

Y.B. Xu and S.M.Thompson, , Taylor & Francis, 2006.

Course Outcome:

After learning the course the students should be able to:

- 1. To notify the learner about the various type of spintronics-based devices.
- 2. To understand about spin based transport in the device.
- 3. To understand about magnetic domain wall motion.

List of Open Source Software/learning website:

http://nptel.ac.in/courses/115103039/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.