GUJARAT TECHNOLOGICAL UNIVERSITY CHEMICAL TECHNOLOGY (36) SUBJECT NAME: PROCESS TECHNOLOGY OF DRUGS & INTERMEDIATES (DE-VII) SUBJECT CODE: 2173602

B.E. VIIth SEMESTER

Type of Course: Chemical Technology

Prerequisite: Studied department electives of previous semesters. Basic knowledge of Chemical Engineering, Pharmaceutics, Bio chemistry & Chemistry is required

Rationale: The main objective of this subject is to study the catalytic reactions of enzymes, Chiral technology, separation technology in pharmaceutical industry, design & development of safe process, optimization organic process & reactions.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						
				Theory Marks			Practical Marks			
L	Т	Р	С	ESE (E)	PA (M		PA(V)		PA	Total Marks
				(_)	PA	ALA	ESE	OEP	(1)	
4	0	3	7	70	20	10	20	10	20	150

L-Lectures; T-Tutorial/TeacherGuidedStudentActivity;P-Practical;C-Credit;ESE-EndSemesterExamination; PA-Progressive Assessment, ALA- Active Learning Assignment, OEP- Open Ended project

Contents:

Sr. No.	Торіс	Teaching Hours	Module Weightage (%)
01	Raw materials :	2	3
	Raw materials for Pharmaceutical Industry		
02	Enzymes : Enzymes as catalyst (a) in Synthesis for Pharmaceuticals (b) Introduction to Principle of enzymes catalyst, Lipases & esterase are for hydrolytic conversion. Lipases & esterase's in organic solvents, other hydrolytic reactions, Enzyme- catalyzed C-X bond synthesis, Enzyme-catalyzed reduction, Chiral Technology, Chemical Development of enantiomerically pure products, resolution, chiral synthesis etc.	18	30
03	Separation techniques in Pharmaceutical industry: Separation (a) aspect of Chemical Purification & process separation technology (b), Introduction to Separation technology; choosing a separation process, Adsorption Separation methods, Simulated moving bad (SMB) chromatography; Large scale chromatography; homogeneous, Heterogeneous catalyst & phase transfer catalyst	8	13
04	The Design & Development of Safe Chemical Processes : Introduction, the chemical process life-cycle, Legislative requirements for safe process development & scale up,	16	27

	Development technologies for safe Process design, Unit operations posing particular hazards during development, Strategies for chemical hazards assessment, Hazards of gas & vapor generation, Identification of highly-energetic materials, Small scale screening tests: case studies, Flammability issues associated with chemical manufacture, Gas & Vapor pressure systems, Process control considerations & safety critical systems, GMP in chemical development.		
05	Optimization of Organic Reactions & Processes : Introduction the purpose of chemical development, Discovering the best synthetic route; Selecting the best route for scale-up, Choice of raw materials, reagents etc; case studies, the investigative approach to chemical development, Effect of process variables on yield & quality of products; Quality control in process analysis as an aid to optimization, Designing a robust process & preventing scale-up problems, Solvent effects, Work up & product isolation, Selecting the parameters to vary, Planning for scale up, Design of environmentally friendly processes, Effluent minimization & control, Statistical methods of optimization	16	27

Unit		Distribution of Theory Marks (%)						
No	Unit Title	R Level	U Level	A Level	N Level	E Level	Total	
1	Raw materials	1.8	0.3	0.3	0.3	0.3	3	
2	Enzymes	18	3	3	3	3	30	
3	Separation techniques in Pharmaceutical industry	7.8	1.3	1.3	1.3	1.3	13	
4	The Design & Development of Safe Chemical Processes	16.2	2.7	2.7	2.7	2.7	27	
5	Optimization of Organic Reactions & Processes	16.2	2.7	2.7	2.7	2.7	27	

Suggested Specification table with Marks (Theory):

Legends: R: Remembrance; U: Understanding; A: Application; N: Analyze; E: Evaluate and above Levels (Revised Bloom's Taxonomy) Reference Books:

- 1. Enzymes in Industry Prod & App Wolfgang Aehle, Wiley VCH Publication, 2003
- 2. Industrial Pharmaceutical Biotechnology. Heinrich Klefenz, Wiley-VCH Publication, 2002
- 3. Process Integration in Biochemical Engineering, T.Scheper, Springer Publication, 2003.
- 4. Principles of Research & Chemical Development in the Pharmaceutical Industry, Oligan Repic, Wiley Interscience 1998
- 5. From Bench to Market the Evolution Chemical Synthesis, Romano Di Fabio, Oxford University Press, 2000.
- 6. Industrial Bio transformations, A. Liese, Wiley VCH 2000
- 7. Pollution Prevention through Process Integration (Systematic Design Tools), Mahmound M. Academic Press, 1997.
- 8. Practical Process Research & Development, Neal G. Anderson, Academic Press, 2000

- 9. Fine Chemicals Manufacture Tech & Engg, A.Cybulski, Elsevier Publication, 2000
- 10. Mixing Equipment (Impeller type), AIChE Publication 2001
- 11. Chemical Process Quantitative Risk Analysis, AIChE Publication, 2000
- 12. Strategies for Organic Drug Synthesis & Design, & Daniel Led nicer, John Willey & Sons Inc. New York., 2nd Ed, 1998.
- 13. Organic Chemistry of Drug Synthesis: Vol.1 to 6, Daniel Lednicer, John Wiley & Sons Inc.
- 14. Burger's Medicinal Chemistry & Drug Discovery: Vol. 1 to 6, A. Burger & M.E.Wolff, John Wiley & Sons New Jersey,6th Ed, 2003
- 15. Foye's Principles of Medicinal Chemistry, W.O. Foye, Lippincott Williams & Wilkins-Philadelphia, Oxford, 6th Ed, 2008
- 16. Text book of Medicinal & Pharmaceutical Chemistry, Charles Owens Wilson Lippincott Williams & Wilkins Philadelphia. 1962
- 17. Organic Synthesis The Disconnection Approach, Warren S., John Wiley & Sons Chichester.,1st Ed., 2005
- 18. Pharmaceutical Substances: Synthesis, Patents, Applications (N-Z), A. Kleemann, Georg Thieme Verlag, Stuttgart.4th Ed, 2001
- 19. Textbook of Medicinal & pharmaceuticals Chemistry, Wilson & Gisvold ., Williams & Wilkins,1st Ed, 2004.

Course Outcomes:

- 1. To know the catalytic reactions of enzymes, Chiral technology, separation technology in pharmaceutical industry, design & development of safe process, optimization organic process & reactions.
- 2. To carry out the synthesis of drug molecules and preparations of pharmaceutical formulations
- 3. To be able to apply this knowledge in API & Pharmaceutical Formulation industries
- 4. To build a bridge between theoretical and practical concept used in industry

List of Experiments:

1.	Synthesis of drugs involving two or more steps with (a). analysis of raw materials and product synthesized. (b). in process control & reaction monitoring (3 synthesis)
2.	Synthesis of drug intermediates (4 exercises)
3	Any innovative modifications in the process of drug synthesized (2 examples) and no repetition of the same from previous years.

Major Equipment:

Glasswares, heating mantles / water baths, weighing scale, mechanical stirrers, oven, sieves, tablet punching machines, tablet disintegration equipment, tablet dissolution test equipment, UV spectro photometer, Melting / boiling point apparatus etc.

Open Ended Project fields:-

Students are free to select any area of science and technology based on chemical technology applications to define Projects.

Some suggested projects are listed below:

1. Literature survey on Simulated moving bed (SMB) chromatography; Large

scale chromatography; homogeneous, Heterogeneous catalyst & phase transfer catalyst

- 2. Literature survey of chiral synthesis
- 3. Design of Pharma formulation industry.
- 4. PPT on effluent treatment challenges in Pharma industry
- 5. Drug purification by chromatography

List of Open Source Software/learning website:

- 1. Literature available under R&D of Pharmaceutical Industries.
- 2. Literature available on internet
- 3. Medical dictionaries
- 4. Delnet
- 5. Pharma journals / e-journals.

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide.