GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: Plastic Engineering (23) SUBJECT NAME: Speciality Plastics and Applications SUBJECT CODE: 2172307

B.E. 7TH SEMESTER

Type of course: Prerequisite: IPMS, Chemistry of Plastic Materials Rationale:

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	C	Theory Marks			F	Practical I	Marks	
				ESE	PA (M)		PA(V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning;

Learning Objectives: To enable learning of Speciality Plastic Materials, their properties, applications.

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	General introduction.	5	5
	Introduction- High Performance Plastics definition, Definition of		
	Speciality plastics, commercially available speciality and high		
	performance plastics, Engineered plastics, plastics for specific industry		
	like medical, automotive, textile, Dairy, Machine tools, etc. Selection		
	Criteria		
2	HIGH PER FORMANCE PLASTICS: PEEK, PES, LCP, PTFE,	7	10
	POLYIMIDES, PAI/ PPS/ PEI/ E CTFE/ PPE, etc. Chemistry,		
	properties, applications of each of these		
3	Plastics used in Medical Applications:	7	10
	Material Requirements for Plastics used in Medical Devices		
	Introduction, Material Characterization, Sterilization, Chemical		
	Resistance, Biocompatibility, USP Class VI, ISO 10993, Shelf Life		

	 and Aging & Joining and Welding. Polymer Additives Used to Enhance Material Properties for Medical Device Applications Introduction, Types of Additives, Things to Consider When Using Additives, Plasticizers, Wear-Resistant and Lubricious Additives, Pigments, Laser Marking, Radiopaque Additives, Antimicrobials, Conductive Fillers, Nanoadditives & Stabilizers. PLASTICS IN DRUG DELIVERY 		
4	<u>PLASTICS USED IN AUTOMOTIVE INDUSTRIES</u> : Selection Criteria, requirements of materials, Plastics like PP, PU, PVC, PET, PBT, ABS, NYLON6, PE, POM [POLYOXOMETHYLENE], PC, PMMA, ASA (acrylonitrile styrene acrylate). Chemistry, properties, applications.	7	10
5	PLASTICS USED IN AEROSPACE/AVIATION INDUSTRY: Requirements in Aerospace/Aviation, Selection Criteria, Plastics like FLOROPOLYMERS, PI, PEEK, PPS, PPSU, PEI, PPP, ETC. Chemistry, properties, applications.	7	10
6	<u>Plastics in Construction Industry</u> : Requirements in Marine Industry, Selection Criteria, Plastics like PVC, CPVC, PU, EPOXY, PC, ABS,ETC. CHEMISTRY, PROPERTIES, APPLICATIONS	6	10
7	PLASTICS IN MARINE INDUSTRY: REQUIREMENTS, selection criteria, Platsics like Acrylics, Acetals,Polyethylenes, foams, PP,uhmwpe,etc. Chemistry, properties, applications.	6	
8	PLATICS IN SEMICONDUCTOR INDUSTRY: REQUIREMENTS,selection criteria, Plastics like PVDF, PP, PTFE (polytetrafluroethylene);FEP (fluorinated ethylene propylene; PFA (perfluoroalkoxy), ECTFE(ethylene chlorotrifluoroethylene)andPCTFE(polychlorotrifluoroethylene),ETC	6	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
Remembrance	Understanding Level	U	Application Level	A	Analyze	Evaluate Level	E	
R Level					N Level			
10	15		20		15	10		

Legends: R: Remembrance; U = Understanding; A = Application and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Textbooks:

1. High Performance Polymers and Engineering Plastics, Vikas Mittal (Editor), Wiley

2. Practical Guide to High Performance Engg. Plastics, By David J. Kemmish, RAPRA

References:

1. Wikipedia

Course Outcome:

After learning the course the students should be able to:

- 1. Know about speciality and high performance plastics.
- 2. Know various applications of high performance plastics in specific industries

List of Experiments:

- 1. To study the properties and applications of PEEK
- 2. To study properties and applications. Of Flouro polymers.
- 3. To study properties of sulphone based polymers.
- 4. To study properties and applications of IMIDE polymers.
- 5. To study properties and applications of ACETALS.
- 6. To study Medical plastics and do tests to comply for medical applications.
- 7. To study plastic applications in semiconductor industry.
- 8. To study applications of plastics in Cosntuction industry.
- 9. To study applications of plastics in Defence.
- **10.** To study applications of plastics in Marine

Design based Problems (DP)/Open Ended Problem:

Major Equipment: List of Open Source Software/learning website:

- 1. <u>www.wikipedia.org</u>
- 2. <u>www.sciencedirect.com</u>
- 3. www.mit.edu

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute,

along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.