GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: Plastic Engineering (23) SUBJECT NAME: FRP Technology and Composites SUBJECT CODE: 2172307

B.E. 7TH SEMESTER

Type of course: Prerequisite: IPMS, Chemistry of Plastic Materials Rationale:

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	C	Theory Marks			Practical Marks			Marks
				ESE	ESE PA (M)		PA(V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning; Learning Objectives: To enable learning of resins, fibers, FRP and composite product manufacturing processes

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	General introduction.	3	10
	Introduction- Composites- Advantages of FRP –Role of resin and reinforcements -Applications of FRP.		
	Designing in FRP – Selection criteria - material and process selection		
2	Molds for FRP.	4	10
	Introduction – Plaster mold, wooden Mold - GRP molds- Epoxide molds- Steel molds- Aluminum alloy molds- Nickel shell molds.		
3	Polyester resins.	7	15
	Introduction-polyester resins – glycols - unsaturated acids - saturated acids-monomers- inhibitors - Commercial resins - Gelcoat/top coat resins- General purpose resins - Chemical resistant resins- Reduced flammability resins - Low styrene emission resins – Low shrinkage /low profile resins- Special purpose resin.		

4	Catalyst/Accelerators and Inhibitors for unsaturated polyester resins.Introduction – Curing reactions - Catalyst -diacyl peroxides-ketone peroxides-hydro peroxides-dialkyl and diaralkyl peroxide -peroxy esters- perketals. Accelerators or promoters-metal compounds-totality amine - accelerators-mixed motel salts-t-amine accelerators,-inhibitors.	2	10
5	Epoxide Resins:Introduction- Bisphenol A based resins- Glycidyl ester resins- Glycidyl amine resins- Glycidyl ethers of novolac resins- Brominated resins- Diluents- Reactive diluents- Non-reactive diluents. Curing Agents for Epoxide Resins.	6	10
6	Reinforcements: Introduction - Surfacing tissue –Glass fiber - Continuous filament rovings- Chopped strands- Chopped strand mats- Continuous strand mat- Woven glass fabrics- Carbon fiber- Aromatic polyamide (aramid) fibers - Polyester fibers- Polyacrylonitrile fibers - Nylon - PVC and PVDC Cotton – Sisal - Asbestos– Jute- Boron fibers.	6	15
7	Molding Processes. Introduction - Contact molding -hand lay up - Spray lay-up- Vacuum bag molding - Pressure bag molding – Resin transfer or resin injection molding-pressure injection- Vacuum impregnation and injection - Hot press/matched metal molding - Filament winding- Centrifugul molding - Continuous sheet manufacture – Pultrusion - Sandwich construction.	12	20
8	Bulk, Dough and Sheet molding Compounds and Prepregs.Introduction- Dough and bulk molding compounds - Sheet mould compounds- manufacture of SMC- Prepregs - Commercial products	2	10

Suggested Specification table with Marks (Theory):

Distribution of The	eory Marks						
Remembrance	Understanding Level	U	Application Level	A	Analyze	Evaluate Level	Ε
R Level					N Level		
10	15		20		15	10	

Legends: R : Remembrance ; U = Understanding; A = Application and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Textbooks:

- 1. FRP TECHNOLOGY by Weatherhead.
- 2. FIBERREINFORCED COMPOSITES- Materials, Manufacturing, and Design by P.K. Mallick
- 3. COMPOSITES MANUFACTURING- Materials, Product, and Process Engineering by Sanjay K. Mazumdar
- 4. Hand book of Reinforcement for plastics Milewski
- 5. M O W Richardson "Polymer Engineering Composite" Applied Science.

References:

1. Reinforced Plastics Handbook by Donald Rosato, Dominick Rosato, Elsevier Science & Technology Books, 2004

Course Outcome:

After learning the course the students should be able to:

- 1. Know various applications of FRP
- 2. Identify resins suitable for specific applications
- 3. Identify reinforcements suitable for particular applications.
- 4. Design new applications for FRP products

List of Experiments:

- 1. To manufacture tray using hand layup technique.
- 2. To manufacture pen stand in FRP using spray up technique.
- 3. To study RTM process
- 4. To study pultrusion process
- 5. To study filament winding process and learn various winding techniques.
- 6. To prepare FRP articles using centrifugal casting
- 7. To prepare composites using epoxy resins
- 8. To fabricate composites using multiple fibers and study effects by testing them.
- 9. To make composites using fibers and fly ash.
- 10. To make composites for marine applications.

Design based Problems (DP)/Open Ended Problem:

- 1. Design and Fabricate Pultrusion machine.
- 2. Design and fabricate filament winding machine
- 3. Design and fabricate moulds for hand layup.

Major Equipment: List of Open Source Software/learning website:

- 1. www.wikipedia.org
- 2. <u>www.sciencedirect.com</u>
- 3. www.mit.edu

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The

faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.