GUJARAT TECHNOLOGICAL UNIVERSITY MECHATRONICS ENGINEERING (20)

SUBJECT NAME: MANUFACTURING TECHNOLOGY II SUBJECT CODE: 2172003 B.E. 7th SEMESTER

Type of course: Engineering Science

Prerequisite: N.A.

Rationale: This subject is useful to understand the manufacturing aspects of mechanical product. The various conventional and non-conventional processes are studied in detail with applications. The quality checks as used for manufactured product are also part of studies.

Teaching and Examination Scheme:

Teaching Scheme Credit			Credits	Examination Marks				Total		
L	Т	Р	С	Theory Marks Practical M		Marks	IVIAIKS			
				ESE	PA (M) PA (V)		PA			
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment; OEP-Open Ended problem; AL-Active learning;

Content:

Sr. No.	Content	Total	%
		Hrs	Weightage
1	METAL FORMING PROCESSES: Plasticity of metals; hot and cold working processes; forward and reverse extrusion process and	09	23
	Redrawing; concept of die design for cutting and drawing.		
2	FOUNDRY PRACTICE: Patterns, types of patterns, advantages and limitation; pattern allowances; molding sand; sand properties and testing; defects in casting; properties of liquid metal (density, fluidity, viscosity, specific heat etc) and its effect; casting design consideration; different types of gates, gating design; advantages and disadvantages of gating system; riser, riser design; location of riser; casting defects, special casting methods-investment casting,	09	23

	centrifugal casting, die casting.		
3	WELDING PROCESSES: Basic requirements of welding process, classification of welding process; joining rate; static volt-ampere characteristics of welding arc; arc initiation and maintenance methods; welding process parameters and its effect - type of current, electrode polarity, current, voltage and welding speed; power source characteristics; arc welding processes such as MMAW, SMAW, SAW, TIG, MIG; Types of Resistance welding processes; functions of electrode coating (flux); applications of welding processes.	09	23
4	JIG AND FIXTURES: Location principle; location analysis; work piece control: equilibrium theory, geometric control, mechanical control, dimensional control, tolerance stacking, alternate / redundant locators; location hardware; clamping and tool guiding elements; general design consideration for jigs and fixtures; location system for various tooling used in workshop.	07	18
5	NON-TRADITIONAL MANUFACTURING METHODS: EDM, AJM, ECM, USM and LBM process principles, equipment and process parameters.	05	13
6	MEASURING AND GAUGING: Concept of direct and indirect measurement; surface finish measurement, limit gauging, Taylors gauging principle, Gauging of taper angle, angle measurement using Sine Bar and slip gauges.	04	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
Remembrance	Understanding	Application	Analyze	Evaluate		
R Level	U Level	A Level	N Level	E Level		
40	20	15	15	10		

Legends: R : Remembrance ; U = Understanding; A = Application and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1 Manufacturing Technology Foundry, Forming & Welding P N Rao Tata Mc Graw Hill
- 2 Welding Processes & Technology Parmar R S Khanna Publishers
- 3 Non-Traditional Machining Marcel Dekker Benedict G F
- 4 Principle of Metal Casting Addison Wesley Flinn R A
- 5 Principles of Engineering Production, Lissaman and Martin, ELBS

Course Outcome:

After learning the course the students should be able to:

- 1. Acquire the basic knowledge of all manufacturing processes used on shop floor of any industry.
- 2. Decide the appropriate production process for any product upon the number of options available to optimize production process.
- 3. Apply quality checks and assess the better product using the concept of measuring and gauging.
- 4. Design and analyze a work / tool holding device to satisfy the requirement of motion control and mechanical deformation.

List of Experiments:

- 1 To find GFN, clay content & moisture content.
- 2 Effect of clay content on green compressive strength, permeability and hardness of molding sand.
- 3 Effect of moisture content on green compressive strength, permeability and hardness of molding sand
- 4 Analysis of measuring and gauging instruments
- 5 Analysis of 3-2-1 location principle
- 6 To study the effect of process variables of EDM on MRR and surface finish
- 7 Effect of varying arc welding process variables on resultant bead parameters using bead on plate test-shielded metal arc welding
- 8 Effect of varying arc welding process variables on resultant bead parameters using bead on plate test-submerged arc welding
- 9 Effect of varying arc welding process variables on resultant bead parameters using bead on plate test-gas tungsten arc welding
- 10 Study and performance of oxyacetylene gas cutting process and resistance spot welding process.

11 Pipe bending, metal spinning and press work.

Design based Problems (DP)/Open Ended Problem:

Student may be given a task to exhibit their knowledge of the course studied during the academic year.

Major Equipment:

- 1. Laboratory oven, Universal sand strength tester, Mechanical Sieve Shaker
- 2. Permeability tester, Sand rammer, Hardness tester
- 3. SMAW, SAW, TIG, Gas welding set up
- 4. Pipe bender, Spinning set up, Press work
- 5. EDM or any other non-conventional machining set up/machine
- 6. Jigs and fixtures samples

List of Open Source Software/learning website:

The website of NPTL may be utilized for additional learning.

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.