GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: INDUSTRIAL ENGINEERING (15) SUBJECT NAME: RESOURCE OPTIMIZATION TECHNIQUES SUBJECT CODE: 2171503 B.E. 7th SEMESTER

Type of course: Core

Prerequisite: No specific pre-requisite. Students should have primary understanding of production management concepts and necessary quantitative background.

Rationale: Operations Research studies analysis and planning of complex systems. This course will focus on mathematical modelling. A strong emphasis will be given to model formulation. On the methodology side, Linear Programming techniques, Transportation and assignment problems, queuing and replacement theory will be introduced.

Teaching and Examination Scheme:

Teaching Scheme C			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	4	0	8	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total Hrs	% Weight age
1	Introduction: The origin, development, nature, definitions, and history of operations research. Scope and phases of O.R methods. Problem formulation model construction, deriving solutions from models.	2	4
2	Assignment Problems: Assignment problems, Methodical statement, important theorems, Hungarian method, Unbalanced and maximization problems. Travelling salesman problems.	6	8
3	Linear Programming : (a) General linear programming problems, mathematical formulation graphical method for the solution of L.P.P. simplex method, slack and surplus variables, degeneracy, duality in L.P.P., sensitivity analysis, and integer programming.	16	25
4	Transportation problems: Vogel's approximate methods, optimality test, Modi method, steppingstone method, degeneracy, unbalanced transportation problems, transshipment problems.	12	20
5	Queuing theory: Introduction, random arrivals to queue and exponential service times, simulation of queues (only application of problems).	8	13

6	Replacement theory:	8	12
	Introduction, replacement by alternative equipment, money value changing with time type replacement problems, group replacement policy, staffing problems.		
7	Sequencing problems: Introduction, sequencing problems on n-jobs on two machines, n-jobs on three machines and n-jobs on m-machines. Graphical method of 2-jobs on m-machines problems.	4	6
8	Game theory: Introduction, Two-persons-zero-sum games, pay of matrix, strategy, saddle point, algebraic method, method of sub games for game theory problems.	8	12

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
30	35	15	10	5	5			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Operations Research: By J K Sharma, MacMillan Business books
- 2. Operations Research by V.K. Kapoor
- 3. Operations Research by Hamdy H. Taha
- 4. Fundamentals of operation Research by Russell L. Ackoff and Maurice W. Sasieni.
- 5. Operations Research (Methods and problems) by Sasieni M., L. Friedman.
- 6. Operation Management by Elword S. Buffa.
- 7. Operation Research by R.C.Gupta.

Course Outcome:

After learning the course the students should be able to:

Build their own formulations, to expand existing formulations, to critically evaluate the impact of model assumptions and to choose an appropriate solution technique for a given formulation.

List of Experiments:

The T.W. will be based on the above syllabus.

Design based Problems (DP)/Open Ended Problem: None

Major Equipment: None

List of Open Source Software/learning website: www.nptel.ac.in

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.