GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: Biotechnology (04) SUBJECT NAME: Biotechnology for Waste and Wastewater Treatment SUBJECT CODE: 2170410 B.E. 7thSEMESTER

Type of course: B.E. (Biotechnology)

Prerequisite: Basic concepts of waste & waste water and applications of Biotechnology for treatment.

Rationale: Biotechnology for waste and wastewater treatment is essential in the field of water treatment. It involves understanding of waste & wastewater. It also involves various methods of biotechnology to treat the waste and wastewater.

Teaching and Examination Scheme:

Teaching Scheme Credits				Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	100

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Introduction: Movement of Pollutants , Effluent Discharge , Different Treatment Procedures	5	0.78%
2	Aerobic and Anaerobic Bioreactors:Aerobic Degradation , AnaerobicDegradation , Comparison between Aerobic and Anaerobic DegradationPathways , Aerobic Reactors , Anaerobic Reactors , Membrane Reactors, Mode of operation	17	26.56%
3	Mathematical Models for Bioreactors : Basic Reactor Model , Reaction Kinetics, Oxygen Transfer Rates , Mass transfer and Diffusion Coefficients , Activated Sludge Process , Ponds and Lagoons, Transport in Solis , Diffusion and Transport of Gases in Air	15	23.43%
4	Treatment of Waste from Organic Chemical Industries :Introduction,Bio-treatment,PhytoremediationChlorinated Hydrocarbons and Aromatics , and Dioxins :Introduction,Occurrence ,Aerobic DegradationAnaerobicDegradation , Poly-nuclear Aromatic Hydrocarbons(PAH) , HalogenatedOrganic Compounds , Chlorinated Aliphatic Compounds , Chlorinated	17	26.56%

5	Biodegradation of Pesticides : Introduction, Insecticides, Fungicides ,Herbicides, Biodegradation of Pesticides, Degradation of Dyes	10	15.62%
	Textile Effluent: Physical treatment, Biodegradation, Bio-sorption, Combined treatment, Reactors.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
21	28	7	7	7	-		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. "Biotreatment Of Industrial Effluents" by Anil Kumar Mukesh Doble.
- 2. Handbook of Water and Wastewater Treatment Technologies by Nicholas P. Cheremisinoff.
- 3. Waste Water Engineering by Metcalf and Eddy. Publisher: Tata McGraw hill
- 4. Principles of Environmental Engineering by Gilbert Masters.

Course Outcome:

After learning the course the students should be able to:

- 1. Develop fundamental understanding of Applications of Biotechnology for waste and wastewater treatment.
- 2. Understand the Concept of waste and wastewater.
- 3. Understand the technological advancements in water and wastewater treatment technology.
- 4. Understand the various bioreactors and their principles used for treatment.

List of Experiments:

- 1. Study of Sampling Technique and Sample Preservation.
- 2. To Estimate Dissolved Oxygen Content Of Wastewater.(DO)
- 3. To Estimate Chemical Oxygen Demand of The Given Sample(COD)
- 4. To Estimate Biological Oxygen Demand (BOD)
- 5. To Measure The Concentration of Chloride In The Given Sample
- 6. To Estimate The Amount of Ammonical Nitrogen In The Given Sample
- 7. To Estimate The Amount of Nitrate Nitrogen
- 8. To Estimae The Amount of Nitrite Nitrogen
- 9. To Estimate The Amount of Phosphorus Phosphate In The Given Sample
- 10. To Measure The Sulfite (SO3 ⁻²) Content In The Given Sample By Iodometric Titration.
- 11. To Find Out Acidity of The Given Sample.
- 12. To Find Out The Most Probable Number of Coliforms In The Given Water Sample

- 13. Practical on soil Bioremediations
- 14. Visit to waste water treatment plant.
- 15. Collection of Grab And Composite Sample
 - A) To Estimate Total Hardness of Water
 - B) To Estimate Calcium Hardenss of Water
- 16. To Estimate The Total Solids (Ts), Total Dissolved Solids (TDS) And Suspended Solids (SS) In The Given Water Sample.

Design based Problems (DP)/Open Ended Problem:

Open Ended Problem:

Students are free to select any project related to clean up of environment and its applications in the field of Biotechnology. Some of the suggested projects are:

- Reduction of COD/BOD/TDS/TSS etc from wastewater (effluent)
- Design some technology of bioreactor which is more efficient than existing, say, secondary and tertiary treatment of wastes.
- Think and design new equipments for measurements of air pollution and steps to reduce it

Major Equipment:

The major equipments required for experimentation include COD digester, BOD incubator, Colorimeter, Spectrophotometer, Digital Balance, Digital pH meter, Water bath, Centrifuge, Micro-pipette, etc.

List of Open Source Software/learning website:

Students can refer to video lectures available on the websites including NPTEL. Students can refer to the CDs which are available with some reference books.

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.