GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: Aeronautical Engineering SUBJECT NAME: Aircraft Design- I SUBJECT CODE: 2170101 B.E. 7thSEMESTER

Type of course: Engineering Science

Prerequisite: Basics of Flight Mechanics, Aerodynamics, Propulsion, Aircraft Structure.

Rationale: Aircraft Design is one of the core areas in the field of aviation. The concepts of

Aircraft Design are very important in core industry.

Teaching and Examination Scheme:

Tea	ching Scl	heme	Credits			Examinat	amination Marks			
				Theory Marks		Practical Marks		Marks		
L	T	P	C	ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total	% Weightage
		Hrs	
	Introduction of conceptual design of a flight vehicle design:		16.66
1	Aircraft purpose, Payload, cruise & Maximum Speed, Range,	8	
	Endurance, take off and landing distance, design process, conceptual		
	design.		
2	Preliminary estimate of take-off weight:	3	6.25
_	Fuel fraction estimate, total takeoff weight, spread sheet of take off		
	weight estimate.		10.41
3	Wing loading and Thrust/ Weight selection:	5	10.41
	Wing loading effect on takeoff, landing, climb, acceleration, range,		
4	combat, flight ceiling & glide rate.	4	8.33
4	Fuselage design: Volume considerations, Aerodynamic considerations, drag estimation.	4	6.55
	Horizontal and Vertical Tail design:		12.5
5	Tail arrangement, horizontal and vertical tail sizing, tail plan form	6	12.3
	shape, Airfoil section type, tail placement.		
6	Engine selection:	_	10.41
	Propulsion selection, No's of engines, Engine ratings, turbojet engine	5	
	sizing, propulsion system.		
7	Take off and landing distance design:	2	4.16
8	Structural design and material selection:	5	10.41
σ	Material selection, structural loads, internal structure design, material selection.	3	

9	Static Stability and control:	2	4.16
	Refined weight estimate, static stability.		
	Basics of helicopter design:		16.66
10	Principle of helicopter operations, Main Rotor design, airfoils for rotor blades, tail rotor design, Horizontal and vertical stabilizers,	8	
	control systems, The turbine engine, different configurations of		
	helicopter.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
35%	25%	20%	15%	5%	0%		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Design of Aircraft, By Thomas C Corke
- 2. Aircraft Conceptual Design Analysis, By Denis Howe
- 3. Aircraft Design- a conceptual approach by D. P. Raymer

Course Outcome:

After learning the course the students should be able to:

- > To understand about the standard aircraft design process.
- > To know how to estimate weight of aircraft while designing.
- > To understand fundamentals of aircraft configuration selection.
- To know how to choose engine/s and locate them.
- > To locate structural members in particular configuration

List of Experiments:

- 1. To prepare configuration of aircraft as per given data and mission profile.
- 2. To determine maximum Takeoff Weight, Basic empty weight, fuel weight, fuel volume, maximum zero fuel weight, maximum ramp weight.
- 3. To deter mine Thrust/ weight ratio or Power loading and wing loading.
- 4. To select type and number of engines.
- 5. Determine wing dimensions and plot on the drawing sheet using proper scale.
- 6. Determine wing dimensions and plot on the drawing sheet using proper scale.
- 7. Prepare fuselage geometry as per payload shape, weight and Volume.
- 8. To prepare tail plane geometry after determining tail size.
- 9. Prepare landing gear/ under carriage geometry of your design.
- 10. Prepare all primary and secondary control surfaces possible for your aircraft configuration.

Design based Problems (DP)/Open Ended Problem:

Apart from above experiments a group of students has to undertake one open ended problem/design problem.

Few examples of the same are given below.

1. Make a scale model of an aircraft you have designed in Aircraft Design-I subject.

Major Equipment:

Supersonic and Subsonic Wind tunnel, basic model making tools.

List of Open Source Software/learning website: http://nptel.iitm.ac.in/courses.php

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.