GUJARAT TECHNOLOGICAL UNIVERSITY

NANO TECHNOLOGY (39) NANOMAGNETISM AND NANOFLUIDS SUBJECT CODE: 2163906 B.E. 6th SEMESTER

Type of course: Material Science, Nano Science

Prerequisite: Basics of magnetic material science and fundamental of physics and chemistry

Rationale: The purpose of this course is to develop understanding of nanoparticles behavior in magnetic materials for various applications.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	INTRODUCTION:	9	19%
	Introduction to magnetic materials, types of magnetic materials		
	Magnetization, Succeptybility, Magnetic Hysterisis curve, non - linear		
	Magnetic Behaviour and Effect of temperature on magnetization.		
2	Nano Magnets:		18%
	Introduction,		
	Properties of Nano Magnets,		
	B-H curve of Nano Magnets,		
	Temperature Effect of Nano Magnets.		
3	Nano Fluid:	10	20%
	Introduction,		
	Properties of Nano Fluid,		
	Magnetization of Nano fluid,		
	Temperature Effect of Nano fluid.		
	Applications of Nanofluid		
4	Preparation Of Nano magnets and nano Fluid:	10	20%
	Prepartion technique of Nano Magnets,		
	Various synthesis technique for Nano Fluid.		
5	Recent And Advance Application Magnetic Materials:	12	23%
	Applications of Magnetic Materials,		
	Smart cooling Nanofluids		

Suggested Specification table with Marks (Theory):

	Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level				
18	17	28	7	00	00				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. Molecular Nanomagnets by Dante Gatteschi, Roberta Sessoli, Jacques Villain, OUP Oxford, ISBN-10: 0199602263.
- 2. Nanofluids: Synthesis, Properties and Applications by SohelMurshed, C A Nieto Castro, Nova Science Publishers ISBN-10: 1633216772.
- 3. Nanofluids Properties and Their Applications byDebendra Das Devdatta Kulkarni LAP Lambert Academic Publishing, ISBN-10: 365916609X.
- 4. Introduction to Magnetism and Magnetic Materials by D.C. JilesSpringer, ISBN 10: 0412386402
- 5. Magnetic Materials by Rainer Hilzinger, Werner Rodewald, Wiley VCH, ISBN10: 3895783528

Course Outcome:

After learning the course the students should be able to:

- 1. Understand basic properties of Magnetic materials. And their behavior under magnetic field and temperature
- 2. Understand nano- magnets their basic properties of Magnetic materials and their behavior under magnetic field and temperature
- 3. Introduced to Nano Fluid, properties of Nano Fluid, magnetization of Nano fluid, Temperature Effect of Nano fluid.
- 4. Understand about preparation of nano magnets and nano fluid of various chemical and physical techniques.
- 5. Recent And Advance Application Magnetic Materials

List of Experiments:

(Perform any Five experiments from below list and one open ended project)

- 1. Preparation of Nano fluid.
- 2. Preparation of Nano magnet.
- 3. Preparation of Nano magnetic thin film.
- 4. Determine the thermal conductivity of fluid.
- 5. Comparison Between fluid and Nano fluid of their thermal properties.
- 6. Preparation of Ferrofluid.
- 7. Preparation of ZnO based Nanofluid.
- 8. Preparation of TiO2 based Nanofluid
- 9. Preparation of CuO based Nanofluid
- 10. Preparation of doped CuO Nanofluid for Cooling application.

Design based Problems (DP)/Open Ended Problem:

Open Ended /design based project: Apart from above experiments a group of students (Maximum Three) has to undertake one open ended problem/design problem. (Students are free to select any area of science and technology may be based on their branch to define the project)

Aims:

- 1. To provide experience in laboratory based experimentation, data recording and analysis and drawing of conclusions.
- 2. To develop report writing skills for scientific material
- 3. To develop the ability to undertake investigations where, as part of the exercise, the goals and methods have to be defined by the investigator.
- 4. To develop skills in literature searches and reviews.

Evaluation of Open ended / design based small project

- 1. Open ended / design based small project will be evaluated by external examiner with appropriate marks allotment given by GTU time to time.
- 2. Faculties should cultivate problem based project to enhance the basic mental and technical level of students.
- 3. Evaluation should be done on **the approach of the student on his/her efforts** (not on completion) to study the design module of given task.

Examples

- 1. Study the nano materials related problem in magnetic based industries.
- 2. Prepare the nano magnetic thin film for magnetic storage device.

Major Equipment: Apparatus of Magnetic Hysteresis Loop & Magnetization Curve

List of Open Source Software/learning website:

http://www.aspbs.com/jon.htm http://www.northeastern.edu/nanomagnetism/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.