GUJARAT TECHNOLOGICAL UNIVERSITY

MECHATRONICS ENGINEERING (20)

DESIGN OF MECHANISMS - I SUBJECT CODE: 2162001

B.E. 6th Semester

Type of course: Engineering Science

Prerequisite: NA

Rationale: Course gives idea about the basic design procedure. Design steps of various mechanical elements are discussed.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Contents:

Sr No	Contents	Teaching Hrs	Weightage (%)
1	Generalized design procedure, Preferred Numbers, Standardization,	5	10
	Material Selection, Factor of safety, Allowable stresses, Stress		
	Concentration and Remedies		
2	Basic Loads and Stresses such as tensile, compressive, bending, shear,	8	16
	bearing, torsion etc., combine and eccentric loading, Principal Stresses		
	and Strains, Theories of elastic failures		
3	Design of Operational Joints such as Socket and Spigot Joint of Cotter	6	12
	type, Sleeve and cotter Joint, Knuckle Joint, Turn Buckle etc		
4	Design of Columns: Slenderness Ratio, Euler's Formula, End fixity	4	8
	coefficients, Rankine Formula, Design of Push Rod		
5	Design of Springs: Closed Coil Helical Springs, Concentric Springs,	4	8
	Introduction to Leaf Springs		
6	Design of Screw Jack, Lead screw, Toggle Jack	6	12
7	Design of Hand and Foot Lever, Lever of Lever Loaded Safety Valve,	5	10
	Rocker Arm, Bell Crank Lever		
8	Design of shaft and Key:	6	12
	Hollow and Solid Shaft Design based on strength and rigidity,		
	Rectangular and Square Key design, Introduction to Splines		
9	Design of Bolted Joints with cases	4	8
	a) Eccentric load acting parallel to the axis of bolts		
	b) Eccentric load acting perpendicular to the axis of bolts		
	c) The load is inclined to the plane of bolts		

|--|

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks									
R Level	U Level	A Level	N Level	E Level	C Level				
40	20	20	10	5	5				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. U C Jindal, Machine Design, Pearson Education
- 2. Bhandari V. B., Introduction to Machine Design, Tata McGraw Hill
- 3. Shigley J. E, Mechanical Engineering Design McGraw Hill
- 4. Robert L. Norton, Machine Design: An Integrated Approach, Pearson Education Publication
- 5. Pandya & Shah, Machine Design, Charotar Publishing House
- 6. Bernard J. Hamrock, B. O. Jacobson, Steven R. Schmid, Fundamentals of Machine Elements, McGraw Hill International Edition

Course Outcomes:

After successful completion of the course the students shall be able to:

- a) Understand material-strength relationships.
- b) Understand forces acting on various mechanical components and stresses induced in them.
- c) Apply the concept of standardization and graphical representation in designing of mechanical components.

List of Experiments:

- 1. Detail and Assembly of machine tool mechanism- Case study
- 2. Assembly drawing
- 3. Design and Drawing of Various Joints
- 4. Design and Drawing of Screw Jack, Toggle Jack
- 5. Design and Drawing of levers

Open ended problem

Student may be given a task to exhibit the knowledge of the course studied during the academic year.

List of Open Source Software/learning website:

The website of NPTL may be utilized for additional learning.

Active learning Assignments (AL) : Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ part of chapters to groups of students so that the entire syllabus of subject can be covered. The power-point slides should be put up on the web-site of the college/Institute, along with the name of the group, the name of faculty, Department and College on the first slide. The best three works should be sent on achievements@gtu.edu.in.