GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS ENGINEERING OPTOELECTRONICS SUBJECT CODE: 2161008 B.E. 6th SEMESTER

Type of course: Regular

Prerequisite: Fundamental knowledge of Electromagnetics, Electronics devices and Analytical and mathematical knowledge.

Rationale: BE students of EL Engineering need to have good understanding of the fundamentals of Photoluminous-semiconductors, Optoelectronics devices, Optical modulator, Optical detectors and understand the technology behind latest Display devices like LCD, Plasma.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE PA (M)		ESE (V)		PA		
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	10	150

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Light:	03	8
	Nature of light, Wave nature of light, Light sources - blackbody		
	radiation, units of light.		
2	Review of Semiconductor Device Physics:	08	16
	Energy bands in solids, the E-k diagram, Density of states, Occupation		
	probability, Fermi level and quasi Fermi levels, p-n junctions, Schottky		
	junction and Ohmic contacts. Semiconductor optoelectronic materials,		
	Bandgap modification, Heterostructures and Quantum Wells.		
3	Interaction of photons with electrons and holes in a	05	13
	semiconductor:		
	Rates of emission and absorption, Condition for amplification by		
	stimulated emission, the laser amplifier.		
4	Semiconductor Photon Sources: Display Devices	05	13
	Electroluminescence. The LED: Device structure,		
	materials and characteristics, LED drive circuitry, Plasma displays, liquid		
	crystals: properties,LCD, Numeric displays.		
5	Semiconductor Photon Sources: LASER	07	16
	The Semiconductor Laser: Basic structure, theory and device		
	characteristics; direct current modulation. Quantum-well lasers; DFB-,		
	DBR- and vertical-cavity surface-emitting lasers (VCSEL); Laser diode		
	arrays.		

	Device packages and handling		
6	Semiconductor Optical Amplifiers & Modulators: Semiconductor optical amplifiers (SOA), SOA characteristics and some applications, Quantumconfined Stark Effect and Electro-Absorption Modulators.	08	16
7	Semiconductor Photodetectors:Types of photodetectors, Photoconductors, Single junction underillumination: photon and carrie r-loss mechanisms, Noise inphotodetection;Photodiodes, PIN diodes and APDs: structure, materials, characteristics,and device performance.Photo-transistors, solar cells, and CCDs.Optoelectronic integrated circuits – OEICs	10	18

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
30	30	20	10	8	2		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. J.Wilson and J.Hawkes, "Optoelectronics-An Introduction", PHI
- 2. P. Bhattacharya, Semiconductor Optoelectronic Devices; Prentice Hall of India.,
- 3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., 2nd Ed.,
- 4. G. Keiser, Optical Fiber Communications, McGraw-Hill Inc., 3rd Ed.
- 5. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press,
- 6. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc.
- 7. J. M. Senior, Optical Fiber Communication: Principles and Practice, Prentice Hall of India, 2nd Ed.

Course Outcome:

After completing this course students shall able to:

- 1. Ability to solve problems on basic semiconductor optoelectronic devices and light.
- 2. Ability to gain fundamental knowledge of basic semiconductor optoelectronic devices like LED, Laser and drive circuits.
- 3. Ability to understand the Basics of light, interaction of photons with electrons and holes in a semiconductors.
- 4. Ability to understand the working of optical detectors/modulators and various optical devices like amplifiers.
- 5. Ability to relate impacts of semiconductor material properties into the fabrications of semiconductor optoelectronic devices.

List of Experiments:

This shall consist of about 10 Practical's based on the above syllabus.

Design based Problems (DP)/Open Ended Problem:

Students learn advanced topics in modern physics, semiconductor physics, and optics relevant to Engineering Science. The design content is relatively low apart from open-ended problems and term projects but prepare mini projects based on optics principles.

List of Open Source Software/learning website: www.nptel.ac.in

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.