GUJARAT TECHNOLOGICAL UNIVERSITY

RUBBER TECHNOLOGY (26) VISCOELASTICITY OF ELASTOMERS **SUBJECT CODE**: 2142606 B.E. 4th SEMESTER

Type of course: B.E. (Rubber Technology)

Prerequisite: Nil

Rationale: Nil

Teaching and Examination Scheme:

Teaching Scheme		Credits	Examination Marks				Total			
L	Т	Р	C	Theor	Theory Marks		Practical Marks		Marks	Marks
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

Content:

Sr. No.	Content	Total	%	
		Hrs	Weightag	
1	Stress and Strain:		10	
	Elasticity, Generalized Hook's Law, Moduli of Elasticity, Relation			
	Between Bulk modulus(K) & Young modulus (E), Deviation from			
	perfect elastic behaviour, Plasticity and flow.			
2	The Elastic Properties of Rubber:	6	10	
	Introduction, Structure of an ideal rubber, entropy - elasticity, elasticity			
	of a network.			
3	Viscosity:	7	10	
	Introduction, Viscosity and Viscosity Nomenclature, Viscosity Theory,			
	Viscosity Experiments, Polydisperse Polymers, Experimental			
	Procedures, Viscosity Summary.			
4	Phenomena and molecular mechanism of amorphous polymers:	7	15	
	Viscous flow, Kinetic theory of rubber elasticity, Viscoelasticity, Glassy			
	state & glass transition.			
5	Non – Newtonian fluid behaviour:	7	15	
	Newton's law, Classification of fluid behaviour, Non-Newtonian fluid			
	behaviour, Time-independent fluid behaviour, Viscoplastic fluid			
	behaviour, Shear-thickening or dilatant fluid behaviour, Time-dependent			
	fluid behaviour, Visco-elastic fluid behaviour, Dimensional			
	considerations for visco-elastic fluids.			
6	Influence of micro-structure on rheological behaviour:	7	10	
7	Mechanical Models for Linear Viscoelastic Response:	7	15	
	Maxwell Model, The Voight Element, The Four-Parameter Model,			
	Material Response Time — The Deborah Number, Relaxation and			
	Retardation Spectra, Superposition Principles.			

8	Glass Transition Temperature:	7	15
	Introduction, States of aggregation, states of phases, Transition and		
	associated properties, Effect of molecular weight on glass transition		
	temperature, Carothers' equation, heat distortion temperature.		
	Total Hours	45	100%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
14	14	14	14	14			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. The Nature and Properties of Engineering Materials by Zbigniew D.Jastrzebski,2nd Edition.
- 2. Principles of Polymer Engineering by N.G.McCrum, C.P.Bukley and C.B.Bucknall,
- 3. Textbook of Polymer Science by Fred W.BillMeyer
- 4. Non-Newtonian Flow and Applied Rheology by R.P.Chhabra & J.F.Richardson, 2nd Edition.
- 5. Polymer Science and Technology by Robert O. Ebewele
- 6. Polymer Science by V.R. Gowarikar, N.V.Viswanathan & Jayadev Sreedhar

Course Outcome:

After learning the course the students should be able to:

- 1. Able to learn about Moduli of elasticity.
- 2. Compare the Relation Between Bulk modulus(K) & Young modulus (E).
- 3. Know about the Structure of an ideal rubber.
- 4. Understand the importance of Viscosity for elastomers.
- 5. Understand the Kinetic theory of rubber elasticity.
- 6. Learn about the Classification of fluid behaviour.
- 7. Able to learn about influence of micro-structure on rheological behaviour.
- 8. Learn and Compare the different Mechanical Models for Linear Viscoelastic Response.
- 9. Able to understand the importance of Glass Transition Temperature

List of Experiments:

Tutorials/Presentation/Practicals based on above topics

Design based Problems (DP)/Open Ended Problem:

- Stress Strain behaviour of Polymeric Elastomers.
- Evaluation of Rubber Stress-Strain Behavior.
- Classification of Non-Newtonian Fluid.

Major Equipment:

Viscometer, Specific gravity balance, Weighing balance, Hot Plate, Elasticity Test Apparatus etc

List of Open Source Software/learning website:

- <u>http://www.allsealsinc.com/</u>
- <u>http://stbb.nichd.nih.gov/</u>
- <u>http://booksite.elsevier.com/</u>
- <u>http://www.umbc.edu</u>

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.