GUJARAT TECHNOLOGICAL UNIVERSITY POWER ELECTRONICS (24) Electrical Machines & Measurement SUBJECT CODE: 2142407 B.E. 4th Semester

Type of Course: Engineering Science (Power Electronics)

Prerequisite: N.A.

Rationale: N.A.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	C	Theory Marks		Practical Marks		Marks		
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Contents:

Sr.	Торіс	Teaching	Weightage
No.		Hours	
1	Module 1	10	15
	Electromechanical Energy Conversion: Principle, Singly		
	Excited Magnetic System and Doubly Excited Magnetic		
	system. Physical concept of torque production;		
	Electromagnetic torque and Reluctance torque.		
	Concept of General terms pertaining to Rotating Machines:		
	Electrical & Mechanical degree, Pole pitch, Coil, Generated		
	EMF in full pitched coil, Generated EMF in a short pitched		
	coil, EMF polygon, Distribution factor, Pitch factor. MMF		
	produced by Distributed Windings, MMF of a coil, MMF of		
	single phase distributed Winding, MMF waveform of		
	Commutator machine		
2	Module 2	16	20
	D.C. Machines: Working principle, construction and methods		
	of excitation. Armature Winding: Introduction of simplex lap		
	and wave windings.		
	DC generators: EMF equation – methods of excitation –		
	separately and self-excited – shunt, series, compound -		
	armature reaction – effects of armature reaction, voltage build-		
	up – no load characteristics – load characteristics – losses and		
	efficiency D.C. Motors: Principle of operation – back EMF –		
	classification – torque equation – losses and efficiency –		
	power flow diagram, performance characteristics of shunt,		
	series and compound motors – starting of DC motors –		
	necessity and types of starters- speed control - methods of		
	speed control – solid state speed control (block diagram).		

0		1.4	20
3	Module 3	14	20
	Transformers: Principle, construction and operation of single		
	phase transformers, phasor diagram, equivalent circuit, voltage		
	regulation, losses and efficiency, Testing- Open & short		
	circuit tests, Polarity test, Autotransformers - Construction,		
	Principle, Applications and Comparison with two winding		
	transformer,		
	Three phase Transformer: Construction, various types of		
	connection and their comparative features, 3-phase transformer		
	connections - Δ - Δ , Y-Y, Δ -Y, Y- Δ , V-V –Parallel operation of		
	single phase and three phase transformers.		
4	Module 4	03	5
	Philosophy Of Measurement- Methods of Measurement,		
	Measurement System, Classification of instrument system,		
	Characteristics of instruments & measurement system, Errors		
	in measurement & its analysis, Standards		
5	Module 5	10	15
	Analog Measurement of Electrical Quantities - Electro		
	dynamic, Thermocouple, Electrostatic & Rectifier type		
	Ammeters & Voltmeters, Electro dynamic Wattmeter, Three		
	Phase Wattmeter, Power in three phase system, errors &		
	remedies in wattmeter and energy meter. Introduction to		
	measurement of speed, frequency and power factor		
6	Module 6	05	10
	Measurement of Parameters - Different methods of measuring		
	low, medium and high resistances, measurement of inductance		
	& capacitance with the help of AC Bridges, Q Meter		
7	Module 7	06	15
	Digital Measurement of Electrical Quantities-Concept of		
	digital measurement, block diagram Study of digital voltmeter,		
	frequency meter Power Analyzer and Harmonics Analyzer;		
	Electronic Multi meter		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	N Level	A Level	E Level		
20	15	15	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Nagrath I J and Kothari D P, Electric Machines, Tata McGraw Hill
- 2. Ghosh, Electrical Machine, Pearson Education
- 3. P.S. Bhimbra, Electrical Machinery, Khanna Publishers
- 4. Clayton & Hancock, Performance & Design of DC machines, ELBS
- 5. MG Say, Theory, Performance & Design of A.C. Machines, CBS Publishers.

6. A.K.Sawhney, A course in Elect. & Electronic Measurement and Instrumentation, Dhapat Rai & Co.

- 7. Golding & Widis, Electrical Measurement and Measurement instrument, Wheelar Books
- 8. H.S. Kalsi, Electronic Instruments, Tata Mc -Graw hill.
- 9. Carr, Elements of Electronic Instrumentation and Measurement, Pearson Education.
- 10. D. Patranabis, Sensors & Transducers, PHI.

Course Outcomes:

After learning the course the students should be able to:

- Understand working principle, performance, control and applications of DC Machines and Transformer.
- Carry out test and conduct performance experiments on DC machine and Transformer.
- Identify, formulate and solve DC machine and Transformer related problems.
- Understand the working principal and construction of the measuring instruments and recorders.
- Measure various electrical and physical quantities and parameters using meters and transducers.
- Calibrate the measuring devices such as meters and transducers.

List of Practical including Open Ended Problems:

- 1. To obtain Magnetizing Characteristics, Internal & External Characteristic of Self Excited DC Shunt Generator. Also obtain the critical filed resistance of the machine from magnetizing Characteristics.
- 2. To conduct direct load test on a D.C. compound generator with a) Shunt field alone b) Cumulative and differential compounding for short and long shunt connections.
- 3. To obtain Speed Torque characteristics of DC Series Motor and DC Shunt Motor.
- 4. To determine the efficiency of two similar shunt machines by regenerative method. (Hopkinson's Test.)
- 5. To determine the various losses in a D.C. machine and separation of its core losses.
- 6. To perform direct load test on a D.C. shunt motor and plot variation of (a) Input current(b) Speed(c) Torque (d) Efficiency versus output power.
- 7. To operate two single phase transformers of different KVA ratings in parallel and plot the variation of currents shared by each transformer versus load current.
- 8. To make Scott connection of two single phase transformer and to verify the current relation by drawing phasor diagrams for (a) Balanced and (b) Unbalanced resistive loads.
- 9. To conduct open circuit and short circuit test on a three phase three winding transformer and determine the equivalent circuit parameters.
- 10. Speed control of DC Shunt Motor using a) Armature control and b) field control methods. Also perform Swinburne's test on DC Shunt Motor
- 11. (a)Calibration of single phase energy meter by direct loading b) Calibration of single phase static energy meter.
- 12. Measurement of self and mutual inductance a) air cored coil b) iron cored coil.
- 13. (a) Determination of B-H curve b) Determination of hysteresis loop using six point methods.
- 14. Calibration of ammeter, voltmeter and wattmeter using vernier potentiometer

Design based Problems (DP)/Open Ended Problem:

- (1) List the commonly used rotating and stationary electrical machines around us. Identify which application uses which machine.
- (2) Identify the common problems/faults in these machines.
- (3) Suggest the possible solutions/remedies for these problems

(4) List the different measuring instruments. Compare different instruments based on their construction, working principle etc.

Major Equipments:

Lab set ups should include following machines:

- (1) D.C. shunt machine connected to self excited DC generator (with appropriate starter)
- (2) D.C. series machine connected to self excited DC generator (with appropriate starter)
- (3) D.C. compound machine connected to self excited DC generator (with appropriate starter)
- (4) Two identical single phase transformer.
- (5) Two identical three phase transformer
 - Digital multimeters, Ameters, Voltmeters, Wattmeters, Digital power meters, Techometers, Synchroscope, Lamp boards, Rheostates, Loading rheostates, DC variable voltage source of minimum 40A, 0 to 240 V rating
 - The necessary no. of Kits, breadboard, equipment, accessories and instruments etc... to be provided to conduct the above practical in a group of max. 4 students

List of Open Source Software/learning website:

Open Source Software:

- LTSpice for circuit simulation,
- KiCAD for CAD application

Web based tools for design:

- http://www.fairchildsemi.com/support/design- tools/power- supply- web-designer/

- http://www.ti.com/lsds/ti/analog/webench/overview.page

Circuit Lab:

- https://www.circuitlab.com/editor/

Open source Math Tools:

- http://maxima.sourceforge.net/
- http://www.sagemath.org/
- http://www.scilab.org/
- http://www.gnu.org/software/octave/

Learning website

- http://www.electrical-Engineering -portal.com/
- http://nptel.iitm.ac.in/courses.php

Virtual Lab Website

- www.vlab.co.in

Active Learning Assignments (ALA):

Preparation of power point slides, which may include videos, animations, pictures, graphics for better understanding of theory and practical work. The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus can be covered. The power –point slides should be put up on the web site of the College/ Institute, along with the names of the students of the group, the name of faculty and the department