GUJARAT TECHNOLOGICAL UNIVERSITY

METALLURGY ENGINEERING (21) IRON MAKING SUBJECT CODE: 2142107 B.E. 4th SEMESTER

Type of course: Engineering Science

Prerequisite: Basic knowledge of ores and minerals

Rationale:

Iron making program is to prepare students for careers in Engineering where Principles of Extraction of Iron ore & Reduction technology of Iron ores can be applied to the Industries engaged in Iron & Steel Production. This education at the undergraduate level will enable students to seek employment in Iron Making Industries upon graduation while, at the same time, provide a firm foundation for the pursuit of graduate studies in Metallurgy Engineering

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					Total		
L	Т	Р	С	Theory Marks		Practical Mar		Aarks	Marks	
				ESE	PA	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Sr. No	Topics		Module Weightage
1	General:	05	10
	History of iron making. Iron and steel industries in India. Occurrence,		-
	distribution and evaluation of raw materials (iron ore, coal and flux) for		
	iron making.		
2	Burden:	07	10
	Burden preparation, Burden qualities and calculation, Agglomeration-		
	Nodulising and Briquetting, Sintering-process, variables and machines		
3	Palletization:	08	15
	Palletization process, Theory of bonding. Mechanism of ball formation,		
	Disc and drum palletizer, Induration of pallets, Cold bonding technique		
	and testing of pallets.		
4	Blast Furnace (B. F.) - Profile:	10	15
	Constructional features of blast furnace, Profile, Refractories,		
	Accessories, Charging mechanism, Bell and bell-less charging systems.		
5	B.F. – Reactions:	08	15
	Physico-chemical principles of blast furnace. Blast furnace reactions.		
	Reaction in stack, tuyere zone, bosh and hearth. Thermodynamics		
	equilibria, Direct and indirect reduction		
	Kinetics of iron-oxide reduction, Slag-metal reactions, Desiliconization,		
	Desulphurization.		
	B.F. – Operations:	06	10
6	Operational steps, Blast furnace irregularities and remedial measures,		
	Blast furnace gas, properties, cleaning and utilization.		
7	B.F. : Process Developments:	06	10

	RAFT (Raceway Adiabatic Flame Temperature). Fuel injection.		
	Oxygen injection. High top pressure. High temperature blast, their		
	effect on coke rate and metal-impurity.		
	Alternative Methods of Iron Making:	10	15
8	Reduction smelting, Direct reduction processes, Fluidized bed process,		
	Electro thermal process and mini blast furnace.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level		
25%	30%	30%	10%	5%		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. Introduction to Modern Iron Making, R. H. Tupkary, (Khanna Pub.)
- 2. Iron Making and Steel Making: Theory and Practice, A. Ghosh and A. Chatterjee, (Prentice Hall)
- 3. Principles of Blast Furnace Iron Making, A. K. Biswas, (SBA Pub.)
- 4. Making, Shaping and Treating of Steels, A. W. Cramb (Editor) (11th Edition, Vol. 1 & 2, AISE, Pittsburg)
- 5. Blast Furnace: Theory and Practice, J. G. Peacey and W. G. Davenport, (Pergamon Press, Oxford)
- 6. Introduction to Physical Chemistry of Iron and Steel Making, R. G. Ward, (ELBS)
- 7. Blast Furnace Iron Making, J. J. Gupta and Amit Chatterjee, (SBA Pub.)

Course Outcomes:

After successful completion of the course students should be able to:

- 1) Know about Elastic and plastic deformation of metallic materials
- 2) Understand effect of deformation behaviour of ductile & brittle material.
- 3) Able to understand various strengthening methods of metals & alloys.
- 4) Recognise the microstructural and property changes during stages of Annealing.

List of Experiments:

- **1.** To measure the Bulk Density of materials
- 2. To measure Angle of repose
- **3.** Proximate analysis of coke
- 4. Ultimate analysis of coke
- 5. Introduction to Briquetting machine
- 6. Introduction of Sintering machine
- 7. Introduction of Palletising machine
- **8.** To measure Shatter index
- **9.** To measure Mecum index

Design based Problems (DP)/Open Ended Problem:

-Design of waste Heat recovery equipment for iron making plant

-To study the effect of sintering variables on the quality of sinters products

- -Design of Equipment to measure crushing strength of raw materials
- -Design of Mini Blast furnace for improving yield of Metallic Iron.

Major Equipment:

-Blast furnace (Optional: Site Visit) -Sintering Machine -Sintering Furnace -Disk Palletising Machine -Shatter Machine -carbon Sulphur Apparatus

List of Open Source Software/learning website:

- I. <u>http://nptel.iitm.ac.in/</u>
- II. <u>www.ocw.mit.edu</u>

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.