GUJARAT TECHNOLOGICAL UNIVERSITY

INSTRUMENTATION & CONTROL ENGINEERING (17) INDUSTRIAL MEASUREMENT I SUBJECT CODE: 2141705 B.E. 4th Semester

Type of course: Core Engineering

Prerequisite: There is no prerequisite knowledge required for this course.

Rationale: Industrial Instrumentation is a unique part of industry that deals with the measuring of variables that influence materials production and equipment during the development of a product. Every Instrument engineers have to deal with various types of Instruments in the working environment. This course describes the working principles of these measuring instruments

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					Total		
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA	A (M)	PA	A (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA- Progressive Assessment

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	 INTRODUCTION OF MEASUREMENTS : - Definition of Instrumentation. Static char. : - Accuracy, precision, resolution, Sensitivity, Scale, threshold, Hysteresis, Drift, dead zone, repeatability, Linearity, etc. Dynamic characteristics: Speed of Response, lag, errors, fidelity, Response of 1st & 2nd order system. Types of errors etc., - Terminology and Specifications of instruments, Measurement standards :- Time, frequency, Voltage, Current, 3-15 psi etc., ANSI, ASME, ADA, BS, DIN, CSMR, FCI, API, ISI, and introduction Reliability and safety. 	5	6%
2	Transducers: Classification Electrical Transducer- Resistance, capacitance, inductance type, piezoelectric, transduction, etc. Mechanical transducers, Selection of Transducer	5	10%
3	TEMPERATURE MEASUREMENT: Types, Selection, Installation, Calibration Temperature measurement using physical parameter-Electrical type temperature sensor- RTD, RTD resistance measurement with Wheatstone Bridge Circuits: two – wire circuit, three – wire circuit, four – wire measurement circuit, RTD resistance	10	21%

			,
	measurement with Constant Current Source -Thermister-		
	Thermocouples-laws of thermocouple-fabrication of		
	industrial thermocouples-signal conditioning -cold junction		
	compensation-special techniques for measuring high		
	temperature using thermocouples-Radiation methods of		
	temperature measurement		
4	PRESSURE MEASUREMENT: Types, Selection,	10	21%
	Installation, Calibration, Units of pressure-manometers-		
	different types-elastic type pressure gauges-Bourdon tube		
	bellows-diaphragms- Bell Gauge - Measurement of		
	pressure using Electrical transducer as secondary		
	transducer- vacuum pressure measurement-Mechanical		
	gauges-Mcleod gauge-thermal conductivity gauges-		
	Ionization gauge cold cathode and hot cathode types.		
	Differential pressure measurement-flapper-nozzle		
	assembly. Piston type pressure measurement; Dead Weight		
	Piston Gauges		
5	LEVEL MEASUREMENT: Types, Selection, Installation,	10	21%
	Calibration, Electrical methods-Resistive, Inductive &		
	Capacitive-Measurement of Level using Gamma rays-		
	Ultrasonic Methods- Measurement of Liquid level using		
	Float type-Displacer type-Air-Purge system, Soild Level		
	measurement-Hydrostatic types. Level Switches.		
6	FLOW MEASUREMENT : Types, Selection, Installation,	10	21%
	Calibration, Types of flow; Units of flow – volumetric and		
	mass flow ; Importance of flow measurement , Mechanical		
	Flow meters: Variable head type flowmeters- variable area		
	flowmeters, Mass flow meters, Electrical flow meters- EM		
	flowmeter -turbine flowmeter- Ultrasonic flowmeter-		
	Vortex flowmeter- Direct and Indirect methods-open-		
	channel & solid flow measurement- Flow Meter Selection		
	and Designs.		
	· · · · · · · · · · · · · · · · · · ·	•	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level		
21	21	21	7	-		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. Instrument Engineers' Handbook: Process Measurement and Analysis by B. G Liptak.
- 2. Handbook of Applied Instrumentation by D. M. Considine and Sidney David Ross, McGraw Hill Publication.
- 3. Encyclopedia of Instrumentation and Control by D. M. Considine, Kriege Publication Co.
- 4. Instrumentation Reference Book by Walt Boyes, Butterworth Heinemann Publisher.
- 5. Introduction to Instrumentation and Control by A. K. Ghosh, 4th edition, PHI publications
- 6. Industrial Instrumentation by K. Krishnaswamy and S. Vijayachitra, New Age International Publication.

7. Measurement Systems: Application and Design by E. D. Doeblin, McGraw - Hill Publication

Course Outcome:

- After learning the course the students should be able to learn basic measurement principles of temperature, level, pressure and flow sensors.
- Student should be able to define various measurement terms, and to state and define resolution, sensitivity, accuracy and precision etc, and to classify measurement errors
- Students should be able to identify the type of sensor and their relevant specification .etc which can be use in a particular process parameter measurement selection.

List of Experiments:

1. Characterization of Thermocouples.(J/T/K/R/S)

Equipment: Oven, thermocouples, Multimeter, thermocouple reference table, Thermocouple simulator,

2. Characterization of RTD (PT100)

Equipment: Oven, PT100 probe, RTD simulator, Temperature indicator, Multimeter

- 3. Measurement of flow using rotameter
- Equipment:Rotameter
 - 4. measurement of flow using DP cell
- Equipment:Differential Pressure Transmitter, or Manometer etc
 - 5. Flow coefficient of Orifice:
- Orifice installed in a pipe of a liquid fluid, Manometer or DPT.
 - 6. Flow Coefficient of Venturi:
- Venturi installed in a pipe of a liquid fluid, Manometer or DPT.
 - 7. Measurement of Level using Capacitance type of Level Sensor
 - 8. Calibration of pressure gauge using dead weight pressure tester and preparation of report

Equipment: Dead weight pressure tester setup, Standard weight set.

Major Equipment: specified with list of experiments: Dead weight tester, universal calibrator, Temperature bath, Voltage/ current Simulator, RTD/ Thermocouple calibrators, Flow meters, etc.

List of Open Source Software/learning website:

http://nptel.ac.in/video.php?subjectId=108105064

<u>http://www.onlinevideolecture.com/electrical-engineering/nptel-iit-kharagpur/industrial-instrumentation/?course_id=514</u>

https://www.isa.org

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.