GUJARAT TECHNOLOGICAL UNIVERSITY

ENVIRONMENTAL ENGINEERING (13)

ELEMENTS OF CHEMICAL ENGINEERING SUBJECT CODE: 2141306 B.E. 4TH SEMESTER

Type of course: Applied Sciences

Prerequisite: None

Rationale: To give knowledge of chemical engineering relevant in the Environmental Engg field.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	T	P	C	Theor	Theory Marks		Practical Marks		Marks	
				ESE	P/	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	30	0	20	150

Content:

Sr. No.	Content	Total	% Weightage
1	Introduction: Thermodynamics, chemical kinetics, classification of reaction, variables	Hrs 06	14
2	affecting the rate of reaction, definition of reaction rate. Kinetics of Homogeneous Reactions: Concentration dependent reaction rate, single and multiple reactions, elementary and non elementary reaction, rate constant and representation of reaction rate.	06	14
3	Temperature dependent reaction rate: Temperature dependency and Arrhenius' Law, Temperature dependency from thermodynamics, Temperature dependency from Collision theory.	06	14
4	Types of reactors: Batch reactor, plug flow, continuous reactor, mix flow reactor.	06	14
5	Interpretation of batch reactor: Constant volume batch reactor, variable volume batch reactor, temperature and reaction rate.	06	14
6	Introduction to reactor design: Single Ideal reactors, Ideal batch reactor, space time, space velocity, design of reactor, first and second order reactions;	06	15
7	Non ideal flow Time distribution of fluid in vessels, E, the age distribution of fluid Leaving a vessel, Experimental methods-the F curve, the C curve.	06	15

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level				
15	20	10	10	15				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Chemical Reaction Engineering Octave & Levenspiel (3rd Edition, Published by John Wiley and Sons)
- 2. Basic Chemical Kinetics by G. L. Agrawal
- 3. Chemical Engineer's Handbook by John Howard Perry, Robert H. Perry (McGraw-Hill publication)

Course Outcome:

After learning the course the students should be able to:

- 1. Solve the problems of chemical kinetics.
- 2. Interpret the order of chemical reaction.
- 3. Identify the types of chemical reactors and their properties.

List of Tutorials:

- 1. To determine Residence Time Distribution (RTD) by experimental.
- 2. To study the kinetics of Saponification in constant volume batch reactor.
- 3. Classification of chemical reaction useful in reactor design.
- 4. The age distribution of fluid leaving a vessels.
- 5. Experiment on Steady-State Plug flow reactor.
- 6. Experiment on Activation Energy & Temperature Dependency.
- 7. Experiment on batch Reactor.
- 8. Plug flow reactor performance.
- 9. Mixed flow reactor performance.

Active Learning Assignments (ALA): Preparation of power-point slides: which may include videos, animations, pictures, graphics for better understanding of theory and practical work. The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus can be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of faculty and the department.