GUJARAT TECHNOLOGICAL UNIVERSITY

ENVIRONMENTAL ENGINEERING (13)

ENVIRONMENTAL SCIENCES II SUBJECT CODE: 2141302 B.E. 4TH SEMESTER

Type of course: Applied Sciences

Prerequisite: Knowledge of Environmental Sciences I

Rationale: To make students aware of applications of Chemistry in Environmental Engg

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	T	P	С	Theory Marks		Practical Marks		Marks	Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	4	7	70	20	10	20	10	20	150

Content:

Sr. No.	Content		% Weightage
		Hrs	
1	Equilibrium Chemistry	06	14
	Ionization, Complex ions, Solubility product, Common Ion effect		
	Diverse Ion effect, Amphoteric hydroxides.		
2	Physical Chemistry	04	10
	Binary mixtures, solution of solids in liquids, osmosis, dialysis, solvent		
	extraction, catalysis		
3	Organic chemistry:	12	28
	Aliphatic compounds, aromatic compounds, heterocyclic compounds,		
	carbohydrates, fats, proteins, amino acids,		
	Detergents and oil and waxes, pesticides		
4	Colloidal Chemistry:	04	10
	General properties of colloids, colloidal dispersions in liquids and air.		
5	Parameters of wastewater analysis:	16	38
	Basic concepts and determination of acidity, chemical oxygen demand,		
	Dissolved oxygen, Biochemical Oxygen Demand, Nitrogen, sulphates,		
	grease and oils, volatile acids.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
10	15	20	15	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Chemistry for Env. Eng. by Sawyer and McCarty
- 2. Standard methods for analysis of water and waste water-Published by AWWA.
- 3. Environmental Chemistry by A.K.De

Course Outcome:

After learning the course the students should be able to:

- 1. Solve the numerical based on the concepts of quantitative chemistry
- 2. Apply the concepts of Physical chemistry to solve the environmental problems.
- 3. Apply the concept of organic chemistry and correlate the organic matter with biodegradation.
- 4. Determination of the concentration of different parameters in water and wastewater samples like Sulphate, DO, COD, BOD etc..

List of Experiments:

- 1. Determination if acidity of water and wastewater samples.
- 2. Determination of sulphates from water and wastewater.
- 3. Determination of DO from water and wastewater samples.
- 4. Determination of COD from wastewater.
- 5. Determination of BOD from samples.
- 6. Determination of oil and grease from wastewater samples.
- 7. Determination of volatile acids from wastewater.

Design based Problems (DP)/Open Ended Problem:

- 1. The students will be given actual wastewater samples from industries to analyze for all the parameters.
- 2. The students will be made to analyze the water samples collected from their homes for basic parameters.

Major Equipment:

COD soxhlet appuratus with reflux tubes

BOD incubator Balance : Monopan Magnetic stirrer DO meter Hot air oven

Active Learning Assignments (ALA): Preparation of power-point slides: which may include videos, animations, pictures, graphics for better understanding of theory and practical work. The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus can be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of faculty and the department.