GUJARAT TECHNOLOGICAL UNIVERSITY

BIOMEDICAL ENGINEERING (03) BIOSENSORS & TRANSDUCERS SUBJECT CODE: 2140306 B.E. 4th SEMESTER

Type Of Course: Core

Prerequisite: Basics Principles of Physics, Human Anatomy & Physiology, Bio - Potentials

Rationale: to impart in students the knowledge of various transduction principles used for physical, chemical & biological parameter sensing along with their biomedical counterparts

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					Total		
L	Т	Р	С	Theory Marks		Practical Marks		Aarks	Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Sr.	Topics		Module Weightage
110.	BASICS OF SENSING MECHANISMS IN HUMAN BODY	<u> </u>	1%
1	Study of biological sensors in human body and their basic mechanism	-	470
	of action - organization of nervous system- Study of various corpuscles		
	like Pacinian - Chemoreceptors hot and cold receptors haroreceptors		
	BASICS OF TRANSDUCER AND MEASUREMENT SYSTEM	5	10%
	Transducers- sensors: Basics Classification Characteristics and	5	10/0
	Choice Primary sensing elements		
2	Measurements and generalized measurement system. Static		
-	characteristics- accuracy, precision, linearity, hysteresis, threshold:		
	dynamic range. Dynamic Characteristics – response time, damping,		
	calibration, standards and AC/DC bridges.		
	MEASUREMENT OF PHYSICAL QUANTITIES:	16	40%
	Transducers: Temperature transducers – thermos-resistive transducers,		
	thermoelectric, p-n junction, chemical thermometry, Thermal radiation		
	sensor- detectors pyroelectric thermal sensors.		
	Radiation sensors- introduction, basic characteristics, photodetectors,		
	photomultiplier cells, photoconductive cells, photo- resistive cells,		
	photo-junctions, X-Ray & nuclear radiation sensors- ionization camber,		
	proportional counter, G M counter, scintillation detector, solid state		
3	detector.		
	Biomedical applications: body temperature measurement, respiration		
	rate meter, pulse oximeter.		
	Displacement transducers - potentiometric - resistive strain gauges -		
	inductive displacement - capacitive displacement transducer, Opto-		
	Digital encoders.		
	Biomedical applications: goniometer.		
	Pressure transducer- Capacitive, Inductive, strain gauge- principle,		
	properties, types- resistive, rosette, semiconductor, Strain Gage Bridge,		
	Load Cell, Proving Ring, Cantilever Beam, related design problems;		

	LVDT transducers-principle, equivalent circuit, linearity issues, various		
	secondary coil structure design, design problems; and piezo electric		
	type.		
	Biomedical applications: indirect method - measurement of blood		
	pressure using sphygmomanometer -instrument based on Korotkoff		
	sound, catheter tip transducers - measurement of intracranial pressure -		
	catheter tip - implantable type.		
	Transducers for flow, velocity and torque measurements: transducer for		
	flow measurement - rotameter, venturi tube, hot wire anemometer, time		
	of flight flowmeter, vortex flow meter, electromagnetic flow meter,		
	Fiber-optic transducer. Hall effect transducer, ultrasonic transducer.		
	Biomedical applications: pneumotachometer, Impedance Pneumograph,		
	plethysmograph, sonography- frequency specific probe design for		
	various applications (foetal monitoring, blood flow measurement).		
	Transducer for liquid level measurement: basic principle, various types		
	- ultrasonic, capacitive type & optical transducers.		
	Biomedical applications: liquid level detector		
	CHEMICAL & BIOLOGICAL SENSORS	9	30%
	Chemical Transducers: Transducers for the measurement of ions and		
	dissolved gases. Half-cell potential, Reference electrodes - Hydrogen		
	electrodes - silver-silver chloride electrodes- Calomel electrodes.		
	Measurement of pH- Glass pH electrodes. Measurement of pO2,		
4	Measurement of pCO2 -catheter tip electrodes for the measurement of		
	pO2 and pCO2, conductivity measurement transducer.		
	Bio sensors: Ion exchange membrane electrodes- oxygen electrodes-		
	CO2 electrodes enzyme electrode - construction - ISFET for glucose,		
	urea etc. Electrolytic sensors - optical sensor - fiber optic sensors.		
	Microbial sensor, Enzyme immobilization of chemical analyses.		
5	THIN FLIM SENSORS: introduction, SAW transducer, tactile sensor-	5	8%
3	grip (capacitive, PZT), gas sensors.		
	8		
	Smart sensors: introduction, primary sensors, excitation, amplification,	5	8%
6	Smart sensors: introduction, primary sensors, excitation, amplification, filters, converters, compensations, data communication- standards for	5	8%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
20%	35%	25%	10%	10%			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Sensors And Tranducers, D. Patranabi, Phi Learning Pvt. Ltd., 01-Jan-2003
- 2. Introduction To Biomedical Equipment Technology, 4/E -Carr Joseph J., Carr Pearson Education India, 01-Sep-2001

- The Biomedical Engineering Handbook, Second Edition. Ed. Joseph D. Bronzino, Boca Raton: Crc Press Llc, 2000
- 4. R S Khandpur, Handbook Of Bio Medical Instrumentation, Tata Mcgraw Hill, 2004
- 5. Textbook Of Medical Physiology, Guyton, Elsevier Saunders, 2010
- 6. Ross And Wilson's Anatomy And Physiology, Churchill Livingstone Elsevier, 2006
- 7. Medical Instrumentation, Application and Design, Fourth Edition, John G. Webster, John Wiley & Sons, Inc.
- 8. Biomedical Transducers And Instruments, By Tatsuo Togawa, Toshiyo Tamura, P. Ake Oberg.

Course Outcomes:

After successful completion of the course students should be able to:

- **1.** Present different methods for measuring temperature, pressure, force, flow and other important parameters in determining the circulation-, breathing- and excretory functions.
- 2. Describe how different measurement techniques are used to determine the vital parameters of diagnostic importance.
- **3.** Provide an engineering approach to develop a biomedical measurement systems

List of Experiments:

- 1. Study of different transduction principles.
- 2. To perform displacement measurements using LVDT.
- 3. To perform force measurements using strain gauge.
- **4.** To study of piezo electric transducer.
- 5. To study temperature measurements using thermocouple.
- 6. To study temperature measurements using thermistor
- 7. To study temperature measurements using RTD.
- 8. To perform measurement of pressure using silicon pressure sensor.
- 9. To study of pH measurement.
- **10.** To study different types of electrodes.
- 11. Simulation of Thermistor, RTD etc. using LabVIEW.

Design based Problems (DP)/Open Ended Problem: Sensor design for given requirements

Major Equipment: Transducer kit and LabVIEW

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.