GUJARAT TECHNOLOGICAL UNIVERSITY

BIOMEDICAL ENGINEERING (03) ANALOG CIRCUITS-II SUBJECT CODE: 2140305 B.E. 4th SEMESTER

Type of course: Advanced device modeling and circuit design

Prerequisite: Basic knowledge of Diode, BJT, and MOSFET, JFET, Opamp and systems like amplifier, oscillator and feedback circuits.

Rationale: to prepare the students with detailed knowledge of design of basic analog pre-processing circuits for amplification, filtering & shielding purposes & also familiarize them with various display devices & PCB designing.

Teaching and Examination Scheme:

Teaching Scheme Cre			Credits	Examination Marks				Total		
L	Т	Р	С	Theory Marks		Practical Marks		Marks		
				ESE	PA	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Conten				
Sr.	Topics	Teaching	Module	
No.		Hrs.	Weightage	
1	INSTRUMENTATION AND ISOLATION AMPLIFIERS Instrumentation Amplifier, DC amplifiers, Pulsed excitation amplifier, AC carrier amplifier. Isolation amplifiers:-Carrier Type Isolation Amplifier, Opto Isolators/Optical Coupling, Transformer Coupled Isolation Amplifiers, Fiber Optic Isolation Amplifier, Isolated DC Amplifier, Chopper Stabilized Amplifier, Differential Chopper Amplifier, Linear power supplies, Switching power supplies, Inductor-less switching power supplies, Reverse battery protection, Problems associated with power supplies.	10	20%	
2	GROUNDING AND SHIELDINGTECHNIQUES Capacitive and Inductive crosstalk, EM coupling and interference, grounding considerations, shielding theory and techniques, Power supply noise reduction and filtering, Over-voltage and Electrostatic discharge (ESD) protection techniques. Mechanisms for Cooling, Mechanisms for Cooling, Design of Heat Sink Selection, Input Guarding, Safety Standards In Medical Electronic Amplifiers.	8	15%	
3	OP AMP NOISE THEORY AND APPLICATIONS Introduction, RMS versus P-P Noise, Noise Floor, Signal-to-Noise Ratio, Multiple Noise Sources, Noise Units, Noise Corner Frequency. Types of Noise:- Shot Noise, Thermal Noise, Flicker Noise, Burst Noise, Avalanche Noise. Noise Colors: -White Noise, Pink Noise, Red/Brown Noise, Op Amp Noise.	8	20%	
4	DESIGN TECHNIQUES FOR ACTIVE FILTER	8	20%	

	Introduction, Fundamentals of Low-Pass Filters, Butterworth Low- Pass Filters, Tschebyscheff Low-Pass Filters, Bessel Low-Pass Filters, Quality Factor Q, Low-Pass Filter, High-Pass Filter, Band-Pass Filter, Band-Rejection Filter, All-Pass Filter, Notch filter, Practical Design of Filter Circuit Biasing, Capacitor Selection Component Values, Op Amp Selection.		
5	INTRODUCTION TO COMMUNICATION SYSTEMS Analog and digital communication systems Modulation, Need for modulation. Amplitude modulation: Frequency spectrum, representation of AM, modulation index, power relations in AM wave, AM Generation, modulated transistor amplifier, AM Transmitter and receiver. Frequency modulation: Mathematical representation of FM – Frequency - FM generation – Direct and indirect methods – FM Transmitters, FM demodulation techniques - FM Receivers. Phase modulation: Need for pulse modulation, different types, Pulse Width Modulation, Pulse Position Modulation and Pulse Code Modulation.	8	15%
6	DATA DISPLAY AND RECORDING SYSTEM CRO, Single Beam, Dual Trace, Double Beam CRO, Storage CRO, DSO, Analog And Digital Recorders, Signal Analyzer, frequency Analyzer, function generator, Magnetic Recorder, GPB & PCB Circuit design and component selection, create schematic PCB layout, PCB assembly using MULTISIM software	6	10%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
10%	45%	15%	15%	15%			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1) Ralph Morrison", Grounding And Shielding Technique", Fourth Edition, John Wiley, 1998
- 2) Kim R. Fowler "Electronic Instrument Design", USA Oxford University Press
- 3) Electronics Device and circuits by S Salivahanan and N Suresh Kumar, McGraw Hill Publication [Second Edition or Higher Edition].
- 4) Gayakward- Opamps and Linear Integrated Circuits, Prentice Hall India
- 5) Ron Mancini "Opamp for Everyone", Texas Instrument
- 6) Kaustubh V. Gitapathi "Electronic and Instrument Design" Chintan Publication

Course Outcomes:

After successful completion of the course students should be able to:

- 1. Demonstrate an ability to design Instrumentation and Isolation Amplifiers.
- **2.** Design and understand the concept of Grounding and Shielding Techniques and demonstrate knowledge of Safety Standards in Medical Electronic Amplifiers.

- **3.** Understand the different types of noise and design various types of filters to remove unwanted signals.
- 4. Describe the different types of communication system.
- 5. Demonstrate knowledge of Data Display and Recording System and design the PCB circuit.
- **6.** Provide an engineering approach to develop a electronics circuit used in biomedical measurement systems.

List of Experiments:

To design Instrumentation and Isolation Amplifiers

- 1. To design Instrumentation Amplifier.
- 2. To design Isolation Amplifiers.
- 3. To study different techniques for grounding.
- 4. To design low –pass and high-pass filters.
- 5. To design band-pass and notch filter.
- 6. To study about different types of modulation techniques.
- 7. To study about data display and recording system.
- 8. To study about various types of noise.
- 9. To perform Power supply noise reduction and filtering.
- 10. To design the electronic circuit using PCB Layout.

Design based Problems (DP)/Open Ended Problem: Electronic circuit design for given requirements

Major Equipment: Electronic Components, DSO, CRO, Function Generator, Multisim Software, Tina Software

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.