GUJARAT TECHNOLOGICAL UNIVERSITY

AERONAUTICAL ENGINEERING (01) COMPUTATIONAL FLUID DYNAMICS I SUBJECT CODE: 2140107 B.E. 4th SEMESTER

Type of Course: Engineering Science

Prerequisite: Basic principles of fluid, Fluid Properties and types of fluids

Rationale: CFD is advanced technique to solve problems involving fluid flow and having applications in various field of engineering

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	C	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Introduction: Introduction to Computational Fluid Dynamics, Need for problem solving with CFD, Applications of CFD, Models of fluid flow, concept of substantial derivative, Governing equations of fluid flow: Continuity, Momentum & Energy equation, Conservation and Non-conservation forms of governing equation, Navier-Stokes's model and Euler's model	07 25%	
2	Mathematical behavior of Partial Differential equations: Classification methods for simple PDEs: Cramer's rule & Eigen value method, Role of characteristic lines in hyperbolic equations	04	
3	Basic descretization techniques: Descretization, Need to descretize the domain, Classification: FDM, FVM, FEM, Finite difference method, Finite volume method, FVM for 1-D diffusion problem, Types of solution (Explicit & Implicit)	10	25%
4	Grid Generation: Introduction, Types of grid, Factors affecting the grid, Grid transformation, Prandtl-Mayer expansion waves, Streched grids	08	30%
5	Introduction to Boundary Conditions: Introduction, Physical boundary conditions for inviscid fliud, viscid fluid, compressible flows and unsteady flows	04	
6	Basic Numerical Techniques: Mac-cormack technique, Lax-wendroff technique, ADI Scheme, Relaxation technique	06	20%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level			
10%	30%	15%	25%	20%			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. An Introduction to Computational Fluid Dynamics: The Finite Volume Methd by H K Versteeg & W Malalasekera
- 2. Computational Fluid Dynamics by John D. Anderson.
- 3. Computational Methods for Fluid Dynamics by Joel H. Ferziger, et al
- 4. Computational Fluid Mechanics and Heat Transfer Anderson, D. A., Tannehill, J. C., Pletcher, R. H., Hemisphere
- 5. Numerical Heat Transfer and Fluid Flow by S.V. Patankar

Course Outcomes:

After successful completion of course students should be able to

- 1. To know about the fundamentals of CFD and steps involved in solving CFD problems
- 2. To understand the physical significance of governing flow equations
- 3. To understand the mathematical behavior of Partial differential equations
- 4. To understand the need of descretization and basic descretization techniques
- 5. To understand the need and importance of grid generation
- 6. To understand the basics of Boundary conditions
- 7. To understand the basic numerical techniques

List of practicals:

- 1. An Introduction to MATLAB.
- 2. Study of mathematical operations.
- 3. Study of matrix operations.
- 4. Program to find maximum and minimum from the set of an array.
- 5. Evaluate the sum of geometrics series.
- 6. Write a program to implement the method of least square.
- 7. Find the integral by the trapezoidal rule and simpson's 1/3rd rule.
- 8. Find the roots of an equation by Newton Raphson method.
- 9. Write a program to implement Runge kutta 4th order method to solving dy/dx = x+y; y(0) = 1
- 10. Write a program to solve Laplace equation over a region R.
- 11. Program to solve PDE using inbuilt function and implementing various plots.

Open Ended Problems: Apart from above experiments a group of students has to undertake one open ended problem. Few examples of the same are given below.

- 1. Flow over a flat plate.
- 2. Flow through Nozzle/ Diffuser.
- 3. Flow over an Airfoil.

Major equipments: MATLAB R2014b software package

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.