GUJARAT TECHNOLOGICAL UNIVERSITY

AERONAUTICAL ENGINEERING (01) NUMERICAL METHODS SUBJECT CODE: 2140105 B.E. 4th SEMESTER

Type of Course: Engineering Science

Prerequisite: Basic calculus, algebra

Rationale: "Numerical methods" is a course which has applications in mathematical modeling of real world problems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks		Marks	Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	6	70	20	10	30	0	20	150

Content:

Sr. No.	Topics		Module Weightage
1	Root finding Bisection Methods, False position Methods, Newton – Raphson Methods, Secant Methods and Successive Approximation Methods	06	
2	Interpolation Techniques Newton's interpolation methods for forward interpolation, backward interpolation and Newton's divided interpolation method, Langrange's interpolation methods, Stirling's interpolation methods, Cubic spline interpolation, interpolation by iteration	06	30 %
3	Numerical Integration Trapezoidal rule, Simpson's 1/3 rd and 3/8 th rule, Weddle's rule	03	10 %
4	Solution of system of linear equations using Numerical Techniques Gauss – Jacobi iterative methods, Gauss – Seidel iterative methods	02	
5	Numerical Solution of Ordinary differential equations Solution of Initial value problems by Taylor's series, Picard's methods of successive approximation, Runge – Kutta Method of order 2 and 4, Solution of Boundary value problems by Finite – Difference Methods, Shooting methods	07	20 %
	Numerical Solution of Partial differential equations Finite difference approximation to derivatives, solution of Laplace equation, Successive over-relaxation methods, parabolic equations	07	20 %
	Curve Fitting Least square curve fitting procedures for linear and non linear curves	04	10 %
	Finite Element methods Methods of Approximation - Rayleigh – Ritz Method, Galerkin Methods	04	10 %

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level				
25%	20%	30%	5%	20%				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Introductory Methods of Numerical Analysis—S.S.Sastry.
- 2. Numerical Methods for Scientific and Engineering Computation—M. K. Jain, S.R. K. Iyengar, R.K. Jain.
- 3. Finite Element Procedure—Klaus Jiirgen Bathe.
- 4. Numerical Methods ---E. Bala guruswamy.
- 5. Numerical Methods P. Kandasamy, K. Thilagavathy, K. Gunavathi

Course Outcomes:

After successful completion of course students should be able to

- 1. To know about the fundamental methods of root finding
- 2. To understand the steps involved in interpolation of data
- 3. To understand the real world problem with the use of solution of both ordinary and partial differential equations
- 4. To be able to apply regression and finite element method to the practical problems.

List of Tutorials:

- 1. Problem solving in roots finding methods
- 2. Practice on interpolation methods, (Number of tutorials two).
- 3. Practice on numerical integration and solving system of simultaneous equations.
- 4. Practice on solution of ordinary differential equations. (Number of tutorials two)
- 5. Practice examples on solution of Partial differential equation.(Number of tutorials two)
- 6. Practice examples on curve fitting and finite element method.(Number of tutorials two)

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.