GUJARAT TECHNOLOGICAL UNIVERSITY

MATHEMATICS-4 SUBJECT CODE: 2140001 B.E. 4th SEMESTER

Type of course: Engineering Mathematics

Prerequisites: The students are required to have a reasonable mastery over multivariable calculus, differential equations and Linear algebra.

Rationale:

Mathematics is a language of Science and Engineering.

Teaching and Examination Scheme:

	Teaching Scheme Cred			Credits	Examination Marks					Total	
I		T	P	C	Theo	Theory Marks		Practical Marks		Marks	
					ESE	PA (M)		PA (V)		PA	
					(E)	PA	ALA	ESE	OEP	(I)	
	3	2	0	5	70	20	10	30	0	20	150

Content:

Sr. No.	Content	Total	%
		Hrs	Weightage
1	Complex Numbers and Functions:	10	24
	Limits of Functions, Continuity, Differentiability, Analytic functions		
	Cauchy-Riemann Equations, Necessary and Sufficient condition for		
	analyticity, Properties of Analytic Functions, Laplace Equation,		
	Harmonic Functions, Finding Harmonic Conjugate functions		
	Exponential, Trigonometric, Hyperbolic functions and its properties.		
	Multiple valued function and its branches: Logarithmic function and		
	Complex Exponent function		
2	Complex Integration: Curves, Line Integrals (contour integral) and its	04	10
	properties. Line integrals of single valued functions, Line integrals of		
	multiple valued functions (by choosing suitable branches). Cauchy-		
	Goursat Theorem, Cauchy Integral Formula, Liouville Theorem,		
	Fundamental Theorem of Algebra, Maximum Modulus Theorems		
3	Power Series:	05	12
	Convergence (Ordinary, Uniform, Absolute) of power series, Taylor and		
	Laurent Theorems, Laurent series expansions. Zeros of analytic		
	functions. Singularities of analytic functions and their classification		
	Residues: Residue Theorem, Rouche's Theorem, Argument Principle		
4	Applications of Contour Integration:	02	5
	Evaluation of various types of definite real integrals using contour		
	integration method		
5	Conformal Mapping and its applications:	03	7
	Mappings by elementary functions, Mobius transformations, Schwarz-		
	Christoffel transformation		

6	Interpolation:	04	10
	Interpolation by polynomials, divided differences, error of the		
	interpolating polynomial		
7	Numerical integration:	03	7
	Composite rules, error formulae, Gaussian integration		
8	Linear algebraic equation:	03	7
	Solution of a system of linear equations: implementation of Gaussian		
	elimination and Gauss-Seidel methods, partial pivoting		
9	Roots of equation:	03	7
	Solution of a nonlinear equation: Bisection and Secant methods,		
	Newton's method, rate of convergence, Power method for computation		
	of Eigen values.		
10	Ordinary differential equations:	02	4
	Numerical solution of ordinary differential equations, Euler and Runge		
	Kutta methods		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level		
10%	15%	20%	20%	35%		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

Reference Books:

- 1. R. V. Churchill and J. W. Brown, Complex Variables and Applications (7th Edition), McGraw-Hill (2003)
- 2. J. M. Howie, Complex Analysis, Springer-Verlag(2004)
- 3. M. J. Ablowitz and A.S. Fokas, Complex Variables-Introduction and Applications, Cambridge University Press, 1998 (Indian Edition)
- 4. E. Kreyszig, Advanced Engineering Mathematics(8th Edition), John Wiley (1999)
- 5. S. D. Conte and Carl de Boor, Elementary Numerical Analysis-An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980
- 6. C.E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981
- 7. Gerald C. F. and Wheatley, P.O., Applied Numerical Analysis (Fifth Edition), Addison-Wesley, Singapore, 1998.
- 8. Chapra S.C, Canale, R P, Numerical Methods for Engineers, Tata McGraw Hill, 2003

Course Outcome:

After learning the course the students should be able to:

- o evaluate exponential, trigonometric and hyperbolic functions of a complex number
- o define continuity, differentiability, analyticity of a function using limits. Determine where a function is continuous/discontinuous, differentiable/non-differentiable, analytic/not analytic or entire/not entire.
- o determine whether a real-valued function is harmonic or not. Find the harmonic conjugate of a harmonic function.

- o understand the properties of Analytic function.
- evaluate a contour integral with an integrand which have singularities lying inside or outside the simple closed contour.
- o recognize and apply the Cauchy's integral formula and the generalized Cauchy's integral formula.
- o classify zeros and singularities of an analytic function.
- o find the Laurent series of a rational function.
- o write a trigonometric integral over $[0, 2\pi]$ as a contour integral and evaluate using the residue theorem.
- o distinguish between conformal and non conformal mappings.
- o find fixed and critical point of Bilinear Transformation.
- o calculate Finite Differences of tabulated data.
- o find an approximate solution of algebraic equations using appropriate method.
- o find an eigen value using appropriate iterative method.
- o find an approximate solution of Ordinary Differential Equations using appropriate iterative method.

List of Open Source Software/learning website:

http://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equations-

and-linear-algebra-fall-2011/part-i/

http://nptel.ac.in/courses/111105038/

http://nptel.ac.in/courses/111104030/

http://nptel.ac.in/courses/111107063/

http://nptel.ac.in/courses/111101003/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.