GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL AND INFRASTRUCTURE ENGINEERING GREEN CHEMISTRY AND TECHNOLOGY SUBJECT CODE:2134004 B.E. 3rd Semester

Type of course: Foundation course of Civil & Infrastructure Engineering

Prerequisite: No Prerequisite

Rationale: Green Chemistry and Technology is providing conceptual understanding of environmental chemistry and engineering.

Teaching and Examination Scheme:

Teaching Scheme Ci			Credits	Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA(M)		PA(V)		PA	
					PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Topics:

Sr. No.	Content	Total Hours	% Weightage
1	 Principles and Concepts of Green Chemistry: Sustainable development, atom economy, reducing toxicity. Waste: production, problems and prevention, sources of waste, cost of waste, waste minimization technique, waste treatment and recycling. Green energy: sources, efficiency and sustainability, energy from 	8	19
	biomass and solid waste, Biofuels, alcohol, hydrogen production technology, biofuels from Jatropa		
2	 Introduction to renewable energy sources: solar, wind, hydro, geothermal, ocean, fuel cells. Solar Energy: Sun as Source of Energy, Availability of Solar Energy, Nature of Solar Energy, Solar Energy & Environment. Various Methods of using solar energy –Photothermal, Photovoltaic, Photosynthesis, Present & Future Scope of Solar Bio-mass Energy: Biomass: Generation and utilization, Properties of biomass, Agric ulture Crop & Forestry residues used as fuels. Biochemical and Thermo-chemical Conversion, Combustion, Gasification. 	20	47

	Bio Energy: Importance of biogas technology, Different Types of		
	Biogas Plants. Aerobic and anaerobic bioconversion processes,		
	various substrates used to produce Biogas (cow dung, human and		
	other agricultural waste, municipal waste etc.); Removal of CO2		
	and H2O, Application of Biogas.		
	Wind, Geothermal, Tide and Wave Energy: Wind Energy,		
	Basics & Power Analysis, Wind resource assessment, Power		
	Conversion Technologies and applications, Wind Power		
	estimation techniques, Site Selection, Concept of wind farm,		
	Availability of Geothermal Energy-size and Distribution,		
	Recovery of Geothermal Energy, Various Types of Systems to use		
	Geothermal Energy.		
3	Green Environmental Issues:	6	14
	Introduction - Ecological and carbon foot print, carbon credits,		
	clean development mechanism		
4	Air Pollution:	4	10
	Definition, Composition of atmospheric air, Classification and		
	sources of air pollutants. Effects of air pollution on human, plant		
	and material, Air pollution control methods.		
5	Water & Waste Water Characteristics:	4	10
	Indian standards for water and waste water, Analytical methods		
	of commonly encountered water and waste water quality		
	parameters: pH, Alkalinity, Odor, Color, Solids, Turbidity,		
	Hardness, Chlorine dose, etc.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
25	35	20	10	10	0		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above

Course Outcome:

After learning the course the students should be able to:

- Understand the principles, concepts and waste minimization of Green Chemistry
- Understand the concepts of green environmental issues
- Understand the quality and characteristics of water and waste water
- Determine various water/air quality parameters
- Understand the basic principles of house drainage and solid waste management
- Understand the fundamentals of air pollution

List of Experiments:

- Introduction to Equipment in Environmental Engineering Laboratory
- Introduction to Standards, Sampling, Collection and Preservation of samples
- Determination of pH and conductivity for water and wastewater

- Determination of Solids (suspended, dissolved and settleable)
- Determination of Acidity and Alkalinty
- Determination of hardness and residual chlorine
- Determination of fluoride and nitrate
- Determination of chloride and residual chlorine of water samples
- Ambient air quality measurement using High Volume sampler
- Exhaust gas analysis for air pollutants

Reference:

- P. T. Anastas and J.C. Warner, Green Chemistry, Theory and Practice Oxford, 2000.
- M. Doble and A. K. Kruthiventi, Green Chemistry and Engineering, Academic Press, Amsterdam, 2007.
- Mike Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry, 2002.
- R. E. Sanders, Chemical Process Safety: Learning from Case Histories, Butterworth Heinemann, Boston, 1999.
- H.S. Peavy, D.R. Rowe and G. Tchbanoglous, Environmental Engineering, McGraw Hill International Edition.
- M. L. Davis, Water and waste water Engineering, Mc Graw Hill education (India) Pvt. Ltd. 2013 edition.
- A.P. Sincero and G.A. Sincero, Environmental Engineering, Prentice Hall of India,
- New Delhi.
- G. Tchabanoglous, Solid Waste Treatment and Disposal, McGraw Hill Pub.
- G.S. Birdie and J.S. Birdie, Water Supply and Sanitary Engineering, Dhanpat Rai Publishing Co. New Delhi.
- H.C. Parkins, Air Pollution, McGraw-Hill Pub.
- J.A. Salvato, Environmental Sanitation, Wiley Interscience.
- L.W. Canter, Environmental Impact Assessment, McGraw Hill Pub.
- M.L. Davis and D.A. Cornwell, Introduction to Environmental Engineering, McGraw Hill International edition.
- Metcalf and Eddy,(Revised by G. Tchobanoglous Wastewater Engineering:Treatment, disposal Reuse, Tata-McGraw Hill, New Delhi. V. K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions, Ane Books India, New Delhi, 2006.
- M. M. Srivastava, R. Sanghi, Chemistry for Green Environment, Narosa, New Delhi, 2005.

Major Equipment:

- 1. pH meter
- 2. TDS meter
- 3. High volume sampler
- 4. Exhaust gas analyser
- 5. Ion selective meter for Fluoride and Chloride estimation

List of Open Source Software/learning website:

- 1. ocw.mit.edu
- 2. nptel.ac.in

ACTIVE LEARNING ASSIGNMENTS:

Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of

students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.