GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL & INFRASTRUCTURE ENGINEERING MATHEMATICS FOR INFRASTRUCTURE ENGINEERING SUBJECT CODE: 2134001 B.E. 3RD Semester

Type of course: Foundation Course for Civil & Infrastructure Engineering

Prerequisite: The course follows from Calculus and Linear algebra. The students are also required to have an introductory knowledge of Probability and Statistics.

Rationale: Mathematics is a language of Science and Engineering

Teaching Scheme			Credits	Examination Marks					Total	
L	Т	Р	C	Theor	heory Marks		Iarks Practical N		Marks	Marks
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	2	0	5	70	20	10	20	10	20	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	Ordinary Differential Equations: First order DE: Homogeneous, Exact, Linear and Bernoulli equations; Clairaut's equations; Orthogonal Trajectories; Second and Higher order Linear DE: Homogeneous equations with Constant and Variable Coefficients; Methods of Undetermined Coefficients and Variation of Parameters; Wronskian	10	17
2	Special Functions:Gamma and Beta functionsFourier Series and Fourier Transform:Periodic function; Fourier series; Half-range Expansion; FourierTransformLaplace Transform:Definition; Inverse Laplace Transform; Properties: Linearity, ShiftingTheorems, Transform of Derivatives and Integrals, Convolution andIntegral Equations; Solving ODE using Laplace Transform: PartialFraction method	10	17
3	Partial Differential Equations: Formation; Solution of PDE f(x,y,z,p,q) = 0; First order: Linear equations by Lagrange's method; Some standard forms of Non Linear equations; Charpit's method; Second order: Classification of PDE's; Method of Separation of Variables	10	17

	Probability and Statistics:		
	Probability; Sample Space; Events; Conditional Probability; Baye's		
	Theorem; Random Variable; Mathematical Expectation; Generating		
4	Function and Law of Large Numbers; Probability Distribution: Discrete	12	19
	and Continuous - Binomial, Poisson & Normal; Central Limit		
	Theorem; Elementary Theory of Sampling; Standard Error or Means		
	and Variance		

Reference Books:

- 1. Advanced Engineering Mathematics (8th Edition), by E. Kreyszig, Wiley-India (2007).
- 2. Engineering Mathematics Vol 2, by Baburam, Pearson
- 3. Elementary Differential Equations by W. E. Boyce and R. DiPrima, (8th Edition), John Wiley (2005)
- 4. Fourier series and Boundary Value Problems by R. V. Churchill and J. W. Brown, (7th Edition), McGraw-Hill (2006).
- 5. Calculus by T. M. Apostol, Volume-2 (2nd Edition), Wiley Eastern, 1980
- 6. Statistical Methods I and II by N. G. Das, McGraw-Hill Education
- 7. Applied Statistics & Probability for Engineers by Sharma, Willey
- 8. Fundamentals of Mathematical Statistics by S.C. Gupta and V. K. Kapoor, Sultan Chand & Sons.

Course Outcome:

After learning the course the students should be able to

- 1. Ordinary Differential Equations and Their Applications
 - Determine the order of an ordinary differential equation. Classify an ordinary differential equation as linear or nonlinear.
 - Identify whether or not a differential equation is exact.
 - Solve second order linear differential equations with constant coefficients that have a characteristic equation with real and distinct roots.
 - Evaluate the Wronskian of two functions.
 - Apply the method of undetermined coefficients to solve non-homogeneous second order linear differential equations.
 - Use the method of variation of parameters to solve non-homogeneous higher order linear differential equations
- 2. Fourier Series and Fourier Transform
 - Identify periodic functions, determine their periods & find the Fourier series for them.
 - Find the Fourier sine and cosine series for the function defined on [0, L].
 - Evaluate Fourier transforms from the definition.
- 3. Laplace Transform
 - Evaluate Laplace transforms from the definition.
 - Evaluate inverse Laplace transforms.
 - Apply the shifting theorems to evaluate Laplace transforms and inverse Laplace transforms.
 - Use Laplace transforms to solve differential equations.
 - Evaluate the Laplace transform of a convolution of functions.
- 4. Partial Differential Equations
 - Determine the order of a partial differential equation.
 - Classify a partial differential equation as linear or nonlinear and find its solutions.
- 5. Probability and Statistics
 - Use probability as a tool for statistical analysis.
 - Apply statistical tests.

List of Open Source Software/learning website:

1. NPTEL

http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and%20System/Course_home

https://www.youtube.com/watch?v=DPg5T-YBQjU https://www.youtube.com/watch?v=7fJeo1fylKI https://www.youtube.com/watch?v=1FnBPmEWpus https://www.youtube.com/watch?v=dgDIQ0VA0pA https://www.youtube.com/watch?v=SoBs-YGQUdc https://www.youtube.com/watch?v=Fh8m6Z https://www.youtube.com/watch?v=GmIcbqdvIgcdFaqU

- 2. **Instructor(s):** Prof. Haynes Miller, Prof. Arthur Mattuck http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/
- 3. **Instructor:** Prof. Haynes Miller, Prof. Arthur Mattuck, Dr. John Lewis http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.