GUJARAT TECHNOLOGICAL UNIVERSITY

FOOD PROCESSING TECHNOLOGY FOOD ENGINEERING THERMODYNAMICS **SUBJECT CODE:** 2131404 B.E. 3RD SEMESTER

Type of Course: Food Processing Technology

Prerequisite:Nil

Rationale:Knowledge of food engineering thermodynamics is required to design, operate and understand any system involving the interchange between heat and work or the conversion of material to produce heat and vice-versa. To establish the fundamentals of food engineering thermodynamics such that they can be applied to a range of processes and systems commonly encountered by food engineers. The course aims to teach the principles involved in the thermodynamic analysis of both unit operations and process equipments to provide a strong grounding required for system design and operation. It seeks to provide the necessary background so that the thermodynamic analysis of unknown systems can be approached in a logical and methodological manner. The emphasis is to make students understand the fundamentals of energy transactions in food engineering unit operations and apply these for on the field applications. Knowledge of basic mathematics and science are prerequisite for this subject.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks						Total
L	Т	Р	С	Theor	eory Marks		Practical N		Marks	Marks
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	1	0	5	70	20	10	30	0	20	150

Content:

Sr.	Topics	Teaching	Module
No.		Hrs.	Weightage
1.	Fundamental Concepts	3	5
	Definitions related to Thermodynamics, Units and Dimensions		
2.	Ideal and Real Gases	09	15
	Concept of ideal gas, Characteristic equation of gas. Gas laws,		
	Universal and Characteristic gas constant. Enthalpy and Specific		
	heat. Deviation of real gas from ideal gas, Compressibility factor		
	and the Van der Waal's equation of state for real gas.		
3	Zeroth Laws of Thermodynamics	04	5
	Zeroth Law, Concept of temperature and its measurement. Equality		
	of temperature, calibration and calculations.		
4.	First Law of Thermodynamics	08	20
	First law of thermodynamics. Concept of processes, Flow processes		
	and control volume, Flow work, Steady flow energy equation,		
	Mechanical work in a steady flow process, Throttling process,		
	Application of first law to open, closed and isolated systems.		
5.	Second Law of Thermodynamics	10	20

	Essence of second law, Thermal reservoir, Heat engines and		
	thermal efficiency, COP of heat pump and refrigerator, Definition		
	of available and unavailable energy, Statement of second law,		
	Carnot cycle, Carnot theorem, Clausius inequality, Concept of		
	entropy, Entropy change for ideal gases.		
6	Thermodynamic Relations	07	15
	Maxwell's equations, thermodynamic property relations for a pure		
	substance, Joule-Kelvin effect, Clausius-Clapeyron equation, Gibbs		
	phase rule, types of equilibrium, and conditions of stability.		
7.	Properties of Pure Substance (steam)	04	5
	Definitions, Steam quality, P-V and T-S phase diagrams, Steam&		
	Water Tables and its application in food engineering operations.		
8.	Psychrometrics	07	15
	Psychrometric parameters and their relationships, Psychrometric		
	properties of air.PsychrometricCharts, Mixing of air streams,		
	Heating and cooling processes, Humidification and		
	dehumidification processes and their applications in food		
	processing.		

Reference Books:

- 1. Engineering Thermodynamics by P. K. Nag (TMH)
- 2. Thermodynamics and Heat Engines Vol I by Yadav, R (Central Publishing House, Allahabad)
- 3. Engineering Thermodynamics by Rogers, P H and Mayhew, H
- 4. Thermodynamics by Holman, J P (TMH)
- 5. An Introduction to Thermodynamics, Y.V.C. Rao, New Age International (P) Ltd., Publishers

Course Outcomes:

At the end of this course students will be able to:

- 1. Ability to apply the Knowledge of Fundamental concepts to Practical Food Engineering Systems such as Pumps, Compressor, Boilers, Engines, Turbines, Nozzles, Diffusers, Heat Exchanges, Condensers etc. as well as Non-Flow systems for their Thermodynamic Analysis. Determination of Thermodynamic Properties, Work Transfer, Heat Transfer, Mass/Energy /Enthalpy Balance etc.
- 2. Ability to apply the Knowledge of Fundamental concepts to Food equipment such as Refrigerator & Heat Pump as well as for Non-Flow System for their Thermodynamic Analysis viz:-Determination of Temperatures, Heat Transfer, Work Transfer, Refrigerating / Heating Effect, COP etc.
- 3. Ability to apply the Knowledge of Fundamental concepts to Food Engineering Devices as well as Non-Flow Systems for their Thermodynamic Analysis viz:-Determination of Entropy Changes, Heat /Work Transfer, Available Energy, Availability, Energy Destruction, Irreversibility, Exergy Change etc.
- 4. Ability to apply concepts to Food Engineering Devices with pure substance as working fluid for their Thermodynamic Analysis viz:- Determination of various Thermodynamic Properties-Pressure, Volume, *Temperature, Enthalpy, Internal energy, Entropy, Dryness Fraction, Work / Heat Transfer*, Mass/Enthalpy/Energy Balance etc. using Steam Tables and Mollier Chart.
- 5. Ability to apply the Knowledge of Fundamental concepts to Practical Engineering Devices such as Compressors, Gas Turbines, Nozzles, Diffusers, Heat Exchangers as well as Non-Flow

Systems with Ideal Gas or Mixture of Ideal Gases as working fluid for their Thermodynamic Analysis.

- 6. To enable students to carry out Psychrometric calculations and use Charts for their applications in food processing.
- 7. Develop Thermodynamic Relationships for practical food processing applications.

List of Open Source Software/learning website

- http://nptel.ac.in/courses/112103016/
- <u>http://imechanica.org/node/9501</u>
- http://ocw.nd.edu/aerospace-and-mechanical-engineering/thermodynamics
- http://tigger.uic.edu/~mansoori/Thermodynamics.Educational.Sites_html
- http://units.handbooks.uwa.edu.au/units/mech/mech4429
- http://www.saylor.org/courses/me103

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.