GUJARAT TECHNOLOGICAL UNIVERSITY

ENVIRONMENT ENGINEERING

ENVIRONMENTAL SCIENCES I SUBJECT CODE: 2131301 B.E. 3RD SEMESTER

Type of course: Applied Science

Prerequisite: None

Rationale: Quantitative and qualitative analysis of environmental parameters is a very important aspect of studies of Environmental Engg. The subject of Env sciences I deals with qualitative and quantitative analysis of water and accurate determination of parameters.

Teaching and Examination Scheme:

Tea	Teaching Scheme Credits				Examination Marks				Total	
L	T	P	C	Theory Marks		Practical Marks		Marks		
				ESE	ESE PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	4	8	70	20	10	20	10	20	150

Content:

Sr.	Contents	Total Hrs	% Weightage
No.			
1	Familiarization with lab ware and instruments	04	7
	Glass ware, Plastic ware and measuring instruments, calibration of		
	lab ware and instruments, cleaning solutions; cleaning and washing		
	procedures for chemical and microbiological analysis		
2	Distilled and demineralized waters	04	7
	Methods of preparing distilled waters, high purity waters		
3	General Chemical concepts	08	14
	Molar, Molal, Normal solutions, Valency, oxidation state and		
	Bonding, Chemical Equations and weight Relationship, gas laws;		
	units of expression of results and their interrelationships, precision		
	and accuracy.		
4	Preparation of standard solutions	08	14
	Relationship of atomic, molecular, formula and equivalent weights		
	and solutions, Requirements of primary standards, Secondary		
	Standards and their standardization, characteristics of common		
	laboratory chemicals.		
5	Volumetric and Gravimetric Analysis	08	14
	Sampling, Concept of Quantitative analysis: Precipitation,		
	filtration, Drying, Desiccation, Concept and applications of		
	Volumetric and Gravimetric analysis in engineering field		
6	Standard methods for analysis of water and waste water	02	4
7	Instrumental Analysis	06	10
	Concept of Optical Methods of Analysis, Emission Methods,		
	Dispersion and scattering methods, Electrical methods		
8	Analysis of water quality parameters	16	30

pН.	Solids.	 Hardness. 	, Alkalinity,	Chlorides.	Sulfates
P,	COLLAD	, IIIII GIICOO	, , , , , , , , , , , , , , , , , , , ,	CIIIOIIGO	Danacos

Reference Books:

- 1. Chemistry for Environmental Engineering by Clair N. Sawyer and Perry L. McCarty
- 2. Quantitative Analysis by R.A. Day, Jr. and A.L. Underwood
- 3. Standard Methods for Water and Wastewater Analysis by AWWA

Course Outcome:

After learning the course the students should be able to:

- 1. Calibrate the laboratory glass ware and instruments used in Environmental Engineering laboratory.
- 2. Prepare and standardize the chemicals to be used in Environmental Engineering laboratory.
- 3. Apply the basic concepts of analytical chemistry in performing laboratory analysis of water.
- 4. Interpret the results of analysis.
- 5. Relate the general chemical concepts as applicable in field of environmental engineering.

List of Experiments:

- 1. Familiarization with labware in instruments used in environmental engineering laboratory
- 2. Calibration of different glass wares & Instruments (pH meter and Weigh balance)
- 3. Preparation of primary and secondary standards solutions and its standardization
- 4. To determine pH of given water and wastewater samples.
- 5. To Determine Total solids (TS), Total suspended solids (TSS) and Total dissolved solids (TDS) for given water and wastewater samples.
- 6. To determine Total Hardness , Calcium Hardness and magnesium hardness from given water samples
- 7. To determine Alkalinity (Phenolphthaleine and Methyl orange Alkalinity) from given water samples.
- 8. To determine Chloride from given water and wastewater samples.
- 9. To determine sulphates of given water and wastewater samples.
- 10. Numericals on pH.
- 11. Numericals on Solids
- 12. Numericals on Hardness
- 13. Numericals on Alkalinity
- 14. Numericals on Chlorides
- 15. Numericals on Sulphates

Design based Problems (DP)/Open Ended Problem:

Some suggested mini projects are listed below:

- 1. Prepare charts on analytical techniques referring to Standard methods of examination of water and wastewater.
- 2. Collect drinking water samples from different areas and determine the quality of water.
- 3. Collect wastewater samples from different sources and analyse them for different parameters.
- 4. Collect samples from nearby water source like river, lake, borewell, sea and determine its quality.

Major Equipments:

- 1. pH meter
- 2. TDS meter
- 3. Hot air oven
- 4. Monopan balance

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.