GUJARAT TECHNOLOGICAL UNIVERSITY

CHEMICAL ENGINEERING

ORGANIC CHEMISTRY AND UNIT PROCESSES SUBJECT CODE: 2130501 B.E. Semester: III

Type of course: Chemical Engineering.

Prerequisite: Students having background of chemistry at higher secondary level.

Rationale: It is the basic subject for Chemical Engineering Students.

Teaching and Examination Scheme:

Teaching Scheme		Credits	Examination Marks					Total		
L	Т	Р	С	Theor	y Marl	KS		Practical N	Aarks	Marks
				ESE	PA	A (M)	PA	A (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr. No.	Topics	Teaching Hrs.	Module Weightage
1	General Principles of Organic reactions and Mechanisms: Fission Reaction and reaction intermediates: Free Radical, Carbonium, Carbanion, Carbenes and Nitrenes. Nucleophilles and Electrophilles. Types of Organic reactions and its mechanism: Especially Nucleophillic and Electrophillic Addition and Substitution reactions.	6	
2	Stereochemistry: Optical, Geometrical and Conformational Isomerism: Optical activity, Polarimeter, Specific rotation, Enantiomers, Diasteromers, Optical activity in Lactic and Tartaric acid, R and S configuration of Optically active compound and E and Z designation of Geometrical isomers. Resolution of racemic mixture.	4	60 %
3	Introduction to various Unit Processes and Operations: Nitration, Amination, Hydrogenation, Halogenations, Oxidation, Reduction, Sulphonation, Hydrolysis, Alkylation and Polymerization.	6	
4	Carboxylic acid : Introduction, Preparation and Properties Manufacture Process of Acetic acid, Formic acid, Oxalic acid, Palmitic acid & Stearic acid Derivatives of Carboxylic acids: Acid Amides, Esters, Acid Anhydrides and Acid Chlorides. Mechanism of Esterification and Strengths of Acids.	4	
5	Polynuclear and Heterocyclic Compounds:	4	

	Introduction and Classification.		
	Preparation. Properties and Uses of:		
	Naphthalene, Anthracene, Pyrrole, Furan, Thiophene, Pyridine		
	and Quinoline		
	Application of following reactions with Mechanism:		
	Diazotisation, Sandmeyer, Canninzaro, Wolf Kishner, Clasien,	=	
0	Curtius, Baeyer Villiger, Hoffman and Michael Dieckmann	5	
	reaction.		
	Carbohydrates:		
	Introduction, Classification, Configuration and Chemical		
	reactions of mono, oligo and poly saccharides, especially of		
7	Glucose, Fructose and Starch.	4	
/	Conversion of higher to lower and lower to higher aldose	4	
	(Killiani Synthesis, Ruff & Wohl's Degradation). Conversion of		
	Aldose to Ketose.Manufacturing of Cane Sugar from Sugarcane		
	with flow sheet.		
	Amino acid &Protein Chemistry:		
	Introduction, Composition, Classification & Isolation of		
8	Proteins, Qualitative tests of Proteins, Classification of Amino	4	
0	acids & their synthesis. Amphoteric nature, Isoelectric point,	-	
	Primary, Secondary, Tertiary and Quartanery Structure of		
	Protein, RNA and DNA.		
	Synthetic Drugs:		40%
	Synthesis of drugs, Antiseptics, Halogenated compounds,	_	
9	Antimalarials, Quinoline derivatives, Antibacterials, Sulpha	6	
	Aspirin, Phenacetin, Paracetamol, Sulphanilamide,		
	Sulphaguanidine, Chloromycetin, Chloroquine.		
	Colour, Dyes and Pigments:		
	Introduction, Classification of dyes based on Application and		
10	Structural representation. Colour and Constitution Theory:	_	
10	Quinonoid, Valence bond and Molecular Orbital theory	5	
	Application of Dyes and Pigments.Preparation of some imp		
	derivatives: Congo red, Malachite Green, Crystal Violet,		
	Anzarin, Phenolphinalein, Fluorescein, Eosin and Indigo .		
	Courrence Composition of Crude oil Distillation of the Crude		
11	oil Cracking Knocking Octano number & Cotano number	6	
	Sunthatic natrol		
	Syndicuc peutoi.		

Reference Books:

Sr.	Title/Author/Publisher					
No.						
1.	A Text Book Of Organic Chemistry					
	by P. L. Soni, Sultan Chand & Sons, New Delhi.					
2.	A Text Book of Organic Chemistry					
	by Arun Bahl and B.S. Bahl, Sultan Chand & Sons, New Delhi					
3.	A Textbook of Organic Chemistry					
	by Raj K Bansal, New Age International, New Delhi					
4.	Organic Chemistry					
	By Solomons, John Willey & Sons, USA.					
5.	Organic Chemistry,					
	I. L. Finar Vol. I & II ELBS & Longmans, Green – UK					
6.	Organic Chemistry					

	By Morrison and Boyd, Pearson Education, Singapore.
7.	A Textbook of Organic Chemistry
	By Francis A Carey, Springer –USA
8.	Organic Reaction and their Mechanisms
	By P S Kalsi, New Age International, New Delhi
9.	Atomic Structure and the Chemical Bond
	By Manas Chanda, Tata Mcgrawhill
10.	Heterocyclic Chemistry
	By Bansal B K, New Age International, New Delhi
11.	Organic Chemistry
	By R L Madan, S. Chand & Company, New Delhi
12.	Laboratory Techniques in Organic Chemistry
	By Ahluwalia V K, I K International, New Delhi
13.	Unit Process in Organic Synthesis
	By P H Groggins, Tata Mc Graw Hill, New Delhi.
14.	Vogel's textbook of Qualitative Organic Analysis,
	By Arthur I Vogel, Revised by Jefferey et al. Publisher: Addison Wessley Longmann Ltd,
	England

Course Outcome:

After learning the course the students should be able:

- 1. To build a basic knowledge of the Fundamental structure of Organic molecules.
- 2. To analyze scientific concepts and think critically.
- 3. To understand and explain the reactions in Organic molecules.
- 4. To correlate the same as per their utility in field of Chemical Engineering.

List of Experiments and Open Ended Projects:

Minimum 5 practicals to be performed and remaining Open-ended Projects / Study Reports / Latest outcomes in technology study :-

1. In the beginning of the academic term, faculties will have to allot their students at least one Openended Projects / Study Reports / Latest outcomes in technology.

2. Literature survey including patents and research papers of basic chemistry

- Design based small project or
- Study report based on latest scientific development or
- Technology study report/ modeling/ simulation/collection report or

- Computer based simulation/ web based application/ analysis presentations of applied science field which may help them in chemical engineering fields .

3. These can be done in a group containing maximum **Three** students in each.

4. Faculties should cultivate problem based project to enhance the basic mental and technical level of students.

5. Evaluation should be done on **approach of the student on his/her efforts** (not on completion) to study the design module of given task.

6. In the semester student should perform **minimum 5 set of experiments** and complete **one small open ended dedicated project** based on engineering applications. This project along with any performed experiment should be **EVALUATED BY EXTERNAL EXAMINER**.

<u>LIST OF PRACTICALS</u>: (Minimum 5 out of any three set to be performed.)

(I) Qualitative analysis of different Organic molecules :

1	ACIDS	:	Benzoic, Salicylic, Cinnamic, Sulphanilic, Anthranilic
2	PHENOLS	:	alpha-Naphthol, beta-Naphthol, Resorcinol
3	BASES	:	Aniline, o-m and p-Nitro aniline, p-Toluidine, Diphenylamine

4	ALDEHYDES	:	Benzaldehyde
	KETONES	:	Acetone, Methyl ethyl ketone
	ESTERS	:	Methyl acetate, Ethyl acetate
5	ALCOHOLS	:	Ethyl alcohol, Methyl alcohol
6	HYDROCARBONS	:	Benzene, Toluene
7	CARBOHYDRATES	:	Glucose, Fructose
8	AMIDES	:	Urea, Benzamide
9	ANILIDES	:	Acetanilide
10	HALOGENATED	:	Chlorobenzene, Bromobenzene
	COMPOUNDS		

(II) Organic Estimation by volumetric method of any two of the following :

- 1. Estimation of Phenol by Bromination.
- 2. Glucose by Hypoiodite method.

(III) Organic preparations of any two of the following :

- 1. Acetanilide from aniline.
- 2. Tribromophenol from Phenol.
- 3. m-dinitrobenzene from Nitrobenzene.
- 4. Anthraquinone from Anthracene.
- 5. Phthalic anhydride from Phthalic acid.

Open Ended Project fields:-

Students are free to select any area of organic chemistry and unit process based to define project. Some suggested projects are listed below:

- Detailed study of any unit process like nitration, halogenations, etc.
- Product profile and its manufacturing product any organic compound in detail.

Major Equipments:

- Magnetic Stirrer, Hot plates.
- Laboratory Oven.
- Melting Point Instrument, etc.

List Of Open Source Software/Learning Website:

Students can refer various video lectures available on NPTL, refer soft copies (CD) provided with reference books/text books, etc.

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.