GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA IN MECHATRONICS ENGINEERING

TEACHING SCHEME (w. e. f. Jan ' 12) SEMESTER- VI

SR. NO	SUB. CODE	SUB. CODE SUBJECT	TEACHING SCHEME (HOURS)			CREDITS
			THEORY	TUTORIAL	PRACTICAL	
1	2362001	Microcontrollers	4	0	2	6
2	2362002	Project - II	0	0	12	12
3	2362004	Computer Aided Graphics	0	0	4	4
4	2362005	Fundamental of CNC Programming	2	0	2	4
5		Elective	3	0	0	3
6		Elective Practices	0	0	2	2
		TOTAL	9	0	22	31

Select ANY ONE from the following subjects

Sr. No.	Sub. Code	Elective
1	2362003	Robotics
2	2362006	Networking system & Communications
3	2362008	Digital Signal Processing
4	2361909	Advance Manufacturing System
5	2361917	Hydraulic and pneumatic Devices

Select ANY ONE from the following subjects

Sr. No.	Sub. Code	Elective Practices
1	2362010	Robotics Practice
2	2362007	Networking system & Communications Practice
3	2362009	Digital Signal Processing Practice
4	2361910	Advance Manufacturing System Practice
5	2361918	Hydraulic and pneumatic Devices Practice

Subject Name: Microcontrollers

Sr. No.	Subject Content	Total Hrs.
1	MICROPROCESSORS AND MICRO CONTROLLERS. 1.1 Microprocessors - general idea and block diagram 1.2 Micro controller 1.3 Block diagram of a micro controller 1.4 Introduction to micro controller 1.5 Operating principle 1.6 Comparison between microprocessor and micro controller	6
2	2.1 Introduction 2.2 8051 micro controller hardware 2.3 8051 block diagram 2.4 Function of each block 2.5 8051 Programming model 2.6 8051 DIP Pin assignment 2.7 8051 oscillator and clock 2.8 Ceramic resonator oscillator circuit 2.9 Program counter and data pointer 2.10 A and B CPU registers 2.11 Flags and the program status word PSW 2.12 Internal memory 2.13 Internal RAM Internal RAM organization 2.14 Stack and stack pointer 2.15 Special function registers 2.16 Internal ROM 2.17 Input / output Pins Ports and circuits Port 0 Pin configuration Port 1 pin configuration Port 2 pin configuration Port 3 pin configuration	12

	 2.18 External memory Connecting external memory 2.19 Counters and timer TCON and TMOD function registers 	
	 TCON (Timer control) function registers TMOD Time mode control Function Register Timer counter interrupts 	
	 Timer mode 1, 2 & 3 2.20 Serial Data input / output 2.21 Interrupts Introduction Types of interrupts 	
3	MOVING DATA 3.1 Introduction 3.2 Addressing Modes 3.3 External Data Moves 3.4 Code memory Read-only Data Moves 3.5 Push and Pop opcodes 3.6 Data exchanges 3.7 Example programs	12
4	LOGICAL ARITHMETIC OPERATIONS 4.1 Introduction 4.2 Byte level logical operation 4.3 Bit level logical operation 4.4 Rotate and swap operation 4.5 Flags 4.6 Incrementing and decrementing 4.7 Additions 4.8 Subtraction 4.9 Multiplications and division 4.10 Decimal arithmetic 4.11 Example programs 4.12 Jump and call program range 4.13 Calls and subroutines 4.14 Interrupts and returns	10
5	8051 MICRO CONTROLLER DESIGN 5.1 Introduction 5.2 Micro controller specifications	6

	 5.3 A micro controller design External memory and memory space decoding Reset and clock circuit Expanding I/O 5.4 Timing Subroutines 5.5 Lookup table for 8051 5.6 Serial data transmission 	
6	APPLICATIONS 6.1 Introduction 6.2 Interface keyboards to 8051 based micro controller 6.3 Interface LED & LCD display 6.4 Interface the micro controller system to A/D and D/A converters 6.5 8051 Data communications modes example programmes 6.6 Data acquisition systems	10
	TOTAL	56

NOTE:-Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:

Sr. No.	Subject	Total Hrs.
1	8051 Oscillator circuit and timing	2
2	Timer / counter control logic	2
3	External memory circuit	2
4	Interrupts circuits	2
5	Assembly language programming	2
6	Programming the 8051 - 8051 instruction syntex	2
7	Use commands to move data	2
8	Addition programming	2
9	Subtraction programming	2
10	Multiplication and division programming	2
11	Byte and bit logical operation	2
12	Interface LED display	2
13	A to D converter	2
14	D to A converter	2
	TOTAL	28

- Microcontroller-Architecture, Programming and Application- H.A.Momaya
 The 8051 Micro controller Architecture, Programming and Application-Kenneth J.Ayala
- 3. Microprocessor and Micro controllers B.P.Singh

Subject Name: Project - II Subject Code: 2362002

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

Title	Discription	Total Hrs.
1. Selection of Project	 Explanations of following aspects Determination of logic Market survey and Feasibility using the infrastructure of the Institute. Making of relevant drawing/drafting. Incorporating major manufacturing processes if possible. Non repetitive in nature To develop the generic as well as technology related skills. Having measurable and analytical and results. Innovative in nature 	2
2. Project model Components.	 Explanation of components that may be used in project: 1) Sensor(limit switch, Proximity, Idr, etc) 2) Use logic through programmable IC (micro controller) Or Language base. 3) Motor (DC, Stepper, AC, RC-Servo). 4) Digital gates. 5) Seven segment led or LCD as a display deviece. 6) Hydraulic and pneumatic components 7) P.L.C. 	6
3.Project Preparation	Model making with defined logic and components. Simulation/ Execution of Project Fault finding/ Trouble shooting	56
4. Format of Project Report	Explanation of format of report. 1) Main Project title: 16 point, bold, Capital, Times New Roman. 2) '12' point time new roman. 3) '1.5' line spacing. 4) '12' point bold times new roman title	2
5. Documentation	Preparation of Project report and PPT file	18
	Total	84

Subject Name: Computer Aided Graphics

Subject Code: 2362004

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:

Practical No.	Title	Total Hrs.
1	Prepare 2D production drawing(This includes tolerances, limits, sections, surface roughness, geometric accuracy and precesion symbols etc.) with AutoCAD	4
2	Prepare 2D drawingwith anyone software such as proE, Unigraphics or any one in current use.	4
3	Prepare 3D solid models of given components(At least three) using AutoCAD	6
4	Prepare 3D surface models of given components(At least two) using AutoCAD	4
5	Prepare 3D solid models of given components (at least five with basic features like extrude, revolve, cut, shell, chamfer, rib, fillet etc.) using any one parametric software available.	14
6	Prepare 3D models of given components(at least two with advance modeling features like blend, sweep, pattern) using anyone parametric software available.	8
7	Prepare 3D solid models of components of given assembly (5-7 parts having mechanism) also prepare assembly and orthographic drawings. Also simulate the assembly using any parametric modeling software with animation.	16
	TOTAL	56

References Books:

CAD-CAM
 CAD-CAM-CIM
 By Grover And Zimmer.
 By Rao, Tiwari And Kundra.

3. Computer Graphics- By Herne Backer.

4. Books/ manuals for CAD software selected.

5. ProEngineer for designers By Prof. Sham Tickoo

Subject Name: Fundamentals of CNC Programming

Sr. No.	Subject Content	Total Hrs.
1	FUNDAMENTALS OF PROCESS PLANING: 1.1 Definition, need & various information required for process plan 1.2 Structure of process plan 1.3 Various factors influencing the process plan 1.4 Technological sequence of operations in process planning 1.5 To prepare process plan for different 4 to 5 components having minimum 7 to 8 types of operations.	5
2	 INTRODUCTION TO CNC SYSTEMS: 2.1 Definition of NC Program and CNC system. 2.2 Definition and application of DNC system. 2.3 Configuration of the CNC system & its various elements 2.4 Schematic diagram of a CNC machine tool. 2.5 Closed loop and open loop control system. 2.6 Machine control unit and its various modes of operations. 2.7 Various elements of CNC machines and its major functions (such as ball screw, drives, guideways, encoders/decoders, ATC, APC) 2.8 Various compensations for machine accuracies and cutting. 2.9 Study of specifications of a CNC system. 	8
3	 CNC TOOLINGS: 3.1 Introduction to tooling system in CNC machines 3.2 Various modular carbide tipped tools and tool holders used for CNC turning Centre as per ISO standards. 3.3 Various tooling and tool holders used for CNC machining centre as per ISO standards. 3.4 Tool setting, tool presetting and qualified tools Various tool materials and its cutting parameters for different work piece materials. 	2
4	CNC PART PROGRAMMING: 4.1 Three types of CNC control systems. 4.2 Absolute and incremental dimensions methods 4.3 Introduction of part programming. 4.4 Procedure associated with part programming system. 4.5 CNC co ordinate system.	13

TOTAL	28
4.19 Programming examples for machining centres	
4.18 Programming examples for turning centres.	
4.17 Constant cutting speed and constant speed programming.	
4.16 Thread cutting cycles.	
4.15 Mirror image.	
4.14 Canned cycles.	
4.13 Subroutines (Macros).	
4.12 Various tool compensation.	
the radius.	
4.10 Miscellarieous functions (M codes). 4.11 Circular interpolation using polar co-ordinates and by specifying	
4.9 Preparatory functions(G code). 4.10 Miscellaneous functions (M codes).	
4.8 Word address format.	
4.7 Structure and format of a part programme	
4.6 Axes and motion nomenclature	

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:	Hrs.
1. Prepare conventional process plan for given components	2
2. Study and demonstration of CNC controller's features.	2
3. Demonstration of tool setting, tool handling and tool management	
system on a CNC machine.	2
4. To understand various modes of operations in CNC machines	2
5. Preparation of CNC part programmers and job for	18
(i) 3 jobs on CNC turning centre.	
(ii) 1 job on CNC turning centre with subroutines/cycle.	
(iii) 1 job on CNC machining centre for 2D contouring, drilling, tapping an	nd slot
milling.	
6. Prepare report on industrial visit	
7. Study of various elements of CNC machine	2
Total	28

Reference Books:

1. Mechatronics	HMT.
2. CNC part programming	Pabla
3. CNC machines	Kief
4. CNC machines	Narang & Seharavat
5. Computer aided manufacturing	Kundra, Rao, Tiwari.
6. Production technology	HMT
7. Industrial engineering	O.P Khanna.

Subject Name: Robotics (Elective)

Sr. No.	Subject Content	Total Hrs.
1	INTRODUCTION	4
	 Robot-definition, need, brief history, social justification 	
	 Robot terminology, basic concepts, and key features 	
	Advantages and limitations of robots.	
2	ELEMENTS OF ROBOT	11
	Basic structure.	
	Classification of robotic systems	
	According to types of system	
	According to types of control loop	
	According to structure of manipulator (Cartesian, cylindrical,	
	spherical, articulated)	
	 Degree of freedom, concept measuring and importance. 	
	 Elements: types and functions. 	
	 End affecters: types, sketches, working and applications 	
	 Drives: types and applications. 	
	Sensing devices :	
	Optical sensors	
	Proximity sensors	
	➤ LVDT	
	Thermocouple, RTD, Thermister	
	Force sensing – strain gauge, piezoelectric	
	Acoustic sensing	
	 Control systems : Open loop and close loop with applications and its elements 	
	Robot configurations : (1) stand above (2) in line (3) cycle	
	independent, advantages, limitations and applications.	
	Selection criteria for robot	
	Robot machine vision	
3	ROBOTIC CONTROLS	14
	Purpose	
	Levels of controls :	
	Device controller	
	Work cell controller	

	Area controller	
	Plant host	
	 Servo and non servo control systems – Types, basic principles and 	
	block diagram	
	 Types, working (with diagrams), and applications of various 	
	controls. Types includes following	
	Computed torque technique	
	New minimum time control	
	Variable structure control	
	Non linear decoupled feedback control	
	➤ Resolved motion control	
	> Adaptive control	
	Types, electrical hardware, programming languages used,	
	advantages, limitations and specific examples of control systems.	
	Types includes the following	
	Robot as work cell controller	
	Programmable logic controllerWork cell control with local area networking	
	Multiple network levels	
	Widthple Hetwork levels	
4	INTRODUCTION TO ROBOT PROGRAMMING	6
_	Need and functions of programming	
	Methods of robot programming	
	Manual Teaching	
	l	
	Lead throughProgramming languages.	
	Programming with graphics.	
	Types, features and applications of various programming	
	languages.	
	Simulation for robot movements	
5	ROBOTICS APPLICATIONS, MAINTENANCE & SAFETY	7
	Applications of robots (including special types)	-
	Robot maintenance: Need and types.	
	 Common troubles and remedies in robot operation. 	
	General safety norms, aspects and precautions in robot handling	
	General safety norms, aspects and precautions in robot nationing	
	TOTAL	42

Subject Name: Robotics Practice (Elective Practice)

Subject Code: 2362010

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:

Practical No.	Title	Total Hrs.
1	Study, demonstrations and critically analyse the robot features, specifications, elements, configurations. (At least two)	4
2	Demonstration of different types of end affecters	2
3	Study and prepare report for any one type of special purpose robot.	2
4	Seminar/group discussion/case study/industrial visit for Subject Content and recent developments in the field of robotics.	
5	Simulation various robot actions (motions, operations etc.) for different tasks on robotic software	
6	Critical study of control and control methods (including vision system)	4
7	Practice/ Programming on robot for 4 tasks	10
	TOTAL	28

Reference Books:

1.	Robotics for Engineers	Yoram Koren MGH
2.	Robot applications design manual	Jon Hoshizaki, Emily Bopp
3.	CAD/CAM/CIM	P Radhakrishnan, S. subramaniyam Wiley
4.	Robotics	K S fu
		R Cgonzalez
		C S G Lee
5.	Robotic Engineering	Richard k lafter
6.	Robotic application India	Dr. Amitabh Bhattarcharya

- Robot Reliability and safety CAD/CAM 7.
- 8.
- Industrial Robotics 9.

B.S.Dhillon

M.P.Grover & Zimmer

M.P. Grovers and Others

Subject Name: Networking System & Communications (Elective)

Sr. No.	Subject Content	Total Hrs.
1	NETWORKING OVERVIEW 1.1 DEFINITION AND ADVANTAGES 1.2 NETWORK HARDWARE 1.3 NETWORK SOFTWARE 1.4 O.S.I. MODEL AND ITS SEVEN LAYERS 1.5 TYPES OF NETWORK: LAN, WAN, MAN, INTRANET, INTERNET	4
2	COMPONENTS OF LAN 2.1 TRANSMISSION MEDIA 2.1.1 TWISTER PAIR CABLE 2.1.2 COAXIAL CABLE 2.1.3 FIBER OPTIC CABLE 2.1.4 WIRELESS MEDIA 2.2 SERVERS 2.3 WORK STATIONS 2.4 CONNECTORS 2.5 NETWORK INTERFACE CARD-NIC 2.6 LAB, REPEATELY BRIDGE, ROUTERS, GATEWAY SWITCHES.	6
3	PROTOCAL AND ADAPTER 3.1 DEFINITTION OF PROTOCOL 3.2 IPX/SPX 3.3 TCP/IP 3.4 FTP 3.5 NCP 3.6 ODI 3.7 TOKENING 3.8 TOP 3.9 MAP	6
4	ARCHITECTURE AND TOPOLOGIES 4.1 PEER TO PEER 4.2 CLIENT SERVER 4.3 BUS, STAR, RING, MESH, FREE	4

5	SERVER & WORK STATION	4
	5.1 ADMINISTRATION AND ITS COMMANDS	
6	INTERNET 6.1 DEFINITION 6.2 FEATURES AND SERVICES 6.2.1 E-MAIL 6.2.2 FILE TRANSFER 6.2.3 REMOTE LOGIN 6.2.4 WWW 6.3 TYPES OF CONNECTION 6.3.1 PC DIAL UP 6.3.2 LAN DIAL UP 6.3.3 DEDICATED LEASED LINE	6
7	INTRODUCTION TO COMMUNICATION 7.1 WHAT IS COMMUNICATION? 7.1.1 USE OF COMMUNICATION 7.1.2THE STRUCTURE AND TYPES OF COMMUNICATION 7.1.3 DATA COMMUNIATION 7.2 COMMUNICATION CHANNEL CHARACTERISTICS 7.2.1 COMMUNICATION CHANNEL 7.2.2 ELECTROMAGNETIC WAVES 7.2.3 FREQUENCY AND WAVE LENGTH 7.2.4 ELECTROMAGNETIC SPECTRUM 7.2.5 BAND WIDTH	6
8	COMMUNICATION SYSTEM REQUIREMENT 8.1 DATA COMMUNICATION SYSTEM ISSUE 8.2 CODE AND FORMATS 8.3 SYNCHRONEOUS & ASYNCHRONEOUS SYSTEM 8.4 DATA RATES, SERIAL AND PARALLEL COMMUNICATION 8.5 NETWORK INTERFACE CARD-NIC 8.6 AB, REPEATELY BRIDGE, ROUTERS, GATEWAY SWITCHES.	6
	TOTAL	42

1. Introduction to Networking	Nance	- PHI
2. Local Area Network	- Tanenbaum	
3. Study-Guide-Networking Essentials	- BPB	
4. The Complete Reference		
Netware 4.11 Internet	- Gaskin	- BPB
5. The Complete Reference		
Netware 4.1	- TOM SHELDON	- TMH

6. The Complete Reference Netware 5.

Netware 5. - TMH

7. Data Communication - William L. Schweber - MGH

8. Data & Computer Communication William Stallings - PHI

Subject Name: Networking System & Communication Practice

(Elective Practice)

Subject Code: 2362007

NOTE:- Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:

SR NO.	EXPERIMENTS	Hrs.
1	INSTALL AND TEST VARIOUS NETWORK CONNECTORS, CABLES	4
	INSTALL AND TEST VARIOUS NETWORK CARDS	
2	PREPARE COMPUTER SYSTEM FOR NETWORK	2
3	PREPARE WORK STATION FOR REMOTE BOOTING	2
4	INSTALL AND TEST ACTIVE AND PASSIVE HUB	4
5	INSTALL INTERNET DIAL UP CONNECTION AND ITS SOFTWARE	2
6	USE OF INTERNET	2
	SURFING	
7	• E-MAIL	6
8	STUDY OF ROUTER, REPEATER AND BRIDGE	2
9	APPLICATION OF MODEM AND DATA TRANSFER	2
10	STUDY OF ISDN	2
	TOTAL	28

Subject Name: Digital Signal Processing (Elective)

Sr.	Subject Content	Total
No.		Hrs.
1	DISCRETE TIME SYSTEM	8
	1.1 Introduction	
	1.2 Discrete – time signals	
	1.3 Discrete – time systems	
	1.3.1 Linearity	
	1.3.2 Time invariance	
	1.3.3 Causality	
	1.3.4 Impulse response and convolution sums	
	1.3.5 Stability	
	1.4 Difference equations and time-domain response	
	1.5 Sampling of continuous – time signals	
	1.5.1 Basic Principle	
	1.5.2 Sampling Theorem	
2	THE z - TRANSFORM	8
	2.1 Introduction	
	2.2 Definition of the z – transform	
	2.3 Inverse z – transform	
	2.3.1 Residue theorem	
	2.3.2 Partial – fraction expansions	
	2.3.3 Polynomial division	
	2.3.4 Series expansion	
	2.4 Properties of the z – transform	
	2.4.1 Linearity	
	2.4.2 Time – reversal	
	2.4.3 Time – shift theorem	
	2.4.4 Multiplication by an exponential	
	2.4.5 Complex differentiation	
	2.4.6 Complex Conjugation	
	2.4.7 Real and Imaginary sequences	
	2.4.8 Initial value theorem	
	2.4.9 Convolution theorem	
	2.4.10 Product of two sequences	
	2.4.11 Parseval's theorem	
	2.4.12 Table of the basic z – transforms	

3	FOURIER TRANSFORM	4
	3.1 Introduction	
	3.2 Fourier Transform	
	3.3 Properties of the Fourier Transform	
	3.3.1 Linearity	
	3.3.2 Time – reversal	
	3.3.3 Time – reversal 3.3.3 Time – shift theorem	
	3.3.4 Multiplication by an exponential	
	3.3.5 Complex differentiation	
	3.3.6 Complex Conjugation	
	3.3.7 Real and Imaginary sequences	
	3.3.8 Symmetric and anti symmetric sequences	
	3.3.9 Convolution theorem	
	3.3.10 Product of two sequences	
	3.3.11 Parseval's theorem	
4	DISCRETE TRANSFORM (DFT)	6
-	4.1 Introduction	
	4.2 Discrete Fourier Transform (DFT)	
	4.3 Properties of the DFT	
	4.3.1 Linearity	
	4.3.2 Time – reversal	
	4.3.3 Time – shift theorem	
	4.3.4 Modulation theorem	
	4.3.5 Circular convolution in time	
	4.3.6 Correlation	
	4.3.7 Real and Imaginary sequences	
	4.3.8 Symmetric and anti symmetric sequences	
	4.3.9 Parseval's theorem	
	4.3.10 Relationship between the DFT and <i>z</i> – transform	
	4.5. To Helationship between the Di T and 2 – transform	
5	FAST FOURIER TRANSFORM (FFT)	6
	5.1 Introduction	
	5.2 Types of FFT algorithms	
	5.2.1 Radix – 2 algorithm with decimation in time	
	5.2.2 Decimation in frequency	
	5.2.3 Radix – 4 algorithm	
	5.2.4 Algorithm for arbitrary values of N	
	5.2.5 Alternative techniques for determining the DFT	
	5.3 Signal representations	
6	FIR DIGITAL FILTERS	5
	6.1 Introduction	
	6.2 Ideal characteristics of standard filters	
	6.2.1 Low pass, High pass, band pass, and band stop filters	
	6.2.2 Differentiators	
	6.2.3 Hilbert transform	
	6.3 FIR filter approximation by frequency sampling	
	o.o i in litter approximation by frequency sampling	

7	IIR DIGITAL FILTERS		5
	7.1 Introduction		
	7.2 Analog filter approximations		
	7.2.1 Analog filter specification		
	7.2.2 Butter worth approximation		
	7.2.3 Chebshev approximation		
	7.2.4 Elliptic approximation		
	7.3 Time domain approximation		
		TOTAL	42

1. Digital Signal Processing -Diniz, da Silva and Netto - Cambridge University

2. Discrete Time Signal Processing
3. Digital Signal Processing
4-Oppenheim and Schafer -PHI
5-John Proakis and Manolakis

4. Introduction to DSP -J R Johnson

Subject Name: Digital Signal Processing Practice (Elective Practice)

Subject Code: 2362009

NOTE:- Following are the minimum experiences required, but the college can do more experiences if possible.

Laboratory Experiences:

Perform specific experiments with MATLAB

- 1. To study discrete time systems
- 2. To study sampling theorem
- 3. Computation based on Residue theorem
- 4. Computation based on Polynomial division
- 5. To study the properties of the z transform
- 6. To study the properties of the Fourier transform
- 7. To study the properties of the DFT
- 8. To study the types of FFT algorithms
- 9. To study the characteristics of low pass and high pass FIR filter
- 10. To study Hilbert Transforms
- 11. To study Butter worth IIR Filter approximation
- 12. To study Chebshev IIR Filter approximation

Reference Books:

1. Digital Signal Processing

2. Discrete Time Signal Processing

- 3. Digital Signal Processing
- 4. Introduction to DSP

-Diniz, da Silva and Netto

- Cambridge University

-Oppenheim and Schafer

-PHI

-John Proakis and Manolakis

-J R Johnson

Subject Name: Advance Manufacturing System (Elective)

Sr. No.	Subje	ct Content	Total Hrs.
1	INTRO	DDUCTION TO ADVANCE MANUFACTURING SYSTEM(AMS).	3
	1.1	Know the objectives of learning this subject.	
	1.2	Need, Scope & importance of AMS in industries.	
	1.3	Need of attitude, knowledge & skill required for	
		application of AMS.	
	1.4	Recall evolution of transformation & manufacturing	
		systems.	
	1.5	Concept, components, working and features of Computer	
		Numerical Control (CNC) machine.	
2		JP TECHNOLOGY (GT).	8
	2.1	GT - concept, definition, need, scope, & benefits.	
	2.2	GT- codification systems, types, importance, part	
		families, part classification and coding systems,	
		examples/case study.	
	2.3		
		conventional layout with examples/case study, benefits.	
	2.4	J	
		conventional process planning & examples, CAPP-	
		concept, types, features, methods and importance.	
3	CELL	ULER MANUFACTURING.	4
	3.1	Concept and definition, application and benefits.	
	3.2	Part family and cell formation.	
	3.3	Composite component and key machine concepts.	
	3.4	Cell layout and design.	
	3.5	Job and tool movement within cell.	
	3.6	Types of cell: manual and automatic cell, assembly cell,	
		comparison of cell and Flexible Manufacturing Cell	
		(FMC).	
4		IN TIME (JIT).	3
	4.1	JIT concept, meaning, definition, need and reasons to	
		include this concept in AMS.	
	4.2	Unnecessary elements in conventional manufacturing	
	1	system with reference to JIT with suitable engineering	

	examples/ case study.	
	4.3 JIT implementation requirement.	
	FLEVIDLE MANUEACTURING CVCTEM (FMC)	0
5	FLEXIBLE MANUFACTURING SYSTEM (FMS).	9
	5.1 Flexible Manufacturing Unit (FMU), turn-mill centres,	
	multiple centres, advanced machining centres, etc.	
	5.2 Transfer line- concept, meaning, features & examples.	
	5.3 Flexible Manufacturing System (FMS) -concept, meaning &	
	benefits, major elements and their role.	
	5.4 FMS: layout concept, system, tool handling system,	
	material handling principle and system.	
	5.5 Automated Guided Vehicles (AGV) in FMS- concept,	
	definition, types, functions.	
	5.6 Signal flow diagram, line balancing, Automated Storage and	
	Retrieval System (AS/RS), case examples of FMS for	
	specific components/group of components.	
6	ROBOTICS.	6
0	6.1 Introduction	
	6.2 Robots-concept, definition, economic justification, benefits.	
	6.3 Robots-types, classification, various terminology,	
	specification criterion.	
	6.4 Axes nomenclature, elements, control, for each type of	
	robots.	
	6.5 Sensors- types, classifications, working and applications.	
	g and approximents	
7	INTEGRATION OF COMPUTER AIDED DESIGN (CAD)	3
	WITH COMPUTER AIDED MANUFACTURING (CAM).	
	7.1 Concept, meaning, importance and benefits.	
	7.2 Activities involved in integration of CAD with CAM.	
	7.3 Features and applications of software packages having	
	CAD/CAM integration.	
	7.4 Interfacing: types, standards, features & applications.	
8	COMPUTER INTEGRATED MANUFACTURING (CIM).	3
	8.1 Concept, definition, areas covered and benefits.	
	8.2 CIM: need, block diagram & explanations, importance &	
	features of each terms involved.	
	8.3 Computer Aided Inspection- concept, benefit, types,	
	working and examples, Coordinate Measuring Machine	
	(CMM) - its working and applications.	
	8.4 Protocols in CIM- their features, functions and	
	applications.	
9	CONCURRENT ENGINEERING (CE).	3
	9.1 Introduction	
	9.2 Concept, meaning, terminology, definitions and objective	
	in CE	

	Parallel processing & CE team. Schemes, their definition and exemplification for CE.	
	Total	42

CAD/CAM/CIM	P.Radha krishnan & S.subra narayan (New Age Intentional)
Computer Integrated	S.K.Vajpayee
	(PHI Publication)
Computer Integrated	Bedworth, Wolfe and Anderson (McGraw
Design & Manufacturing	Hill Internationa publication)
Automation, Production and	Mikell P. Groover, (PHI publication)
Computer integrated	
Manufacturing	
Mechatronics	HMT
Mechatronics	Bradleg and Offers (Chapman and Hall publication)
Introduction to Robotics	Arthur J. Critchlow (Mc Millan publication)
Robotics for engineers	Yorom Koran (Mc G.H. Publication)
Practical Robotics	Willium C. Burns Jr. & Janet Evans
	worthington (PHI publication)
Computer aided manufacturing	Rao, Tiwari & Kundra (TMGH
	Publication)
Computer automated	
Manufacturing	John H. Powers Jr. (Mc GH Publication)
CAD/CAM/FOF,	Vol I,II, & III Juneja, Pujara & Sagar TMGH)
Production and operations	
management	Chase/Aquilano (Irwin publication)
	Computer Integrated Manufacturing Computer Integrated Design & Manufacturing Automation, Production and Computer integrated Manufacturing Mechatronics Mechatronics Introduction to Robotics Robotics for engineers Practical Robotics Computer aided manufacturing Computer automated Manufacturing CAD/CAM/FOF, Production and operations

Subject Name: Advance Manufacturing System Practice (Elective Practice)

Subject Code: 2361910

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

LABORATORY EXPERIENCES:			
Experience Type	Experience Number	Description of Laboratory Experience	Total Hrs.
Preparatory	1	 Appreciate main objectives of learning this subject: a. Strengthen the fundamentals of machining processes and computers. b. Familiarise with advance manufacturing systems. c. Appreciate the need of higher mental ability and skill level to work with advance systems. Recall and strengthen know-how for various machining processes and industrial management functions. 	2
Study and demonstration	2	Various sensors and their applications.	2
	3	Flexible manufacturing system with protocols.	2
	4	Various robotics applications.	2
Performance	5	Develop GT codes in suitable part coding system for approximately 12 to 15 components. Ask each student to bring at least one component (having more than 5-6 operations) and also ask him/her to draw it and make the process plan including details of tools required Then the data will be interchanged by batch students. Also prepare feature matrix for all components. (Note: Collection of parts and making drawing and process plan as home assignment.)	4
	6	a) Learn fundamentals of any one database	4

		software operation. b) Prepare database for experience number 5 and analyse this database for formation of various groups.	
	7	 a) Prepare block diagram/structure for any group developed in exercise no.6 for use in Computer Aided Process Planning (CAPP). b) Estimate the time for each operation of each component of group. c) Assuming data on quantity of each component of group, calculate total time for each process. 	4
	8	Develop conceptual FMS model for any one group formed in experience number 6. Also explain steps & procedure for model. This exercise should be held in a group of 3-4 students & group should represent seminar for the model developed. Develop at least three models in a batch.	4
Download and seminar presentation, (Copy downloaded content and seminar of whole batch In one /one set of CD/DVD)	9	 a) Prepare and present seminar individually in your batch. (Seminar topic has to be given by teacher). b) Download individually visual aids, movies, content and other related content for the given case/situation. (Case/situation has to be given by teacher-preferably from emerging/ recent trends). Present and discuss the same in your batch. 	4
Industrial visits	10	Visit at least two related industries.	-
Assignments (Home Assignment)	11	Solve the given tutorials and assignments. One assignment must be on preparation of chart / diagram / poster / graph / drawing / etc on half imperial size of drawing sheet. (For subject AMS).	-
		Total	28

1. CAD/CAM/CIM

2. Computer Integrated Manufacturing

3. Computer Integrated Design & Manufacturing

4. Automation, Production and Computer integrated Manufacturing

P.Radha krishnan & S.subra narayan (New Age Intentional)

S.K.Vajpayee (PHI Publication)

Bedworth, Wolfe and Anderson (McGraw Hill Internationa publication)

Mikell P. Groover, (PHI publication)

5.	Mechatronics	HMT
6.	Mechatronics	Bradleg and Offers (Chapman and Hall publication)
7.	Introduction to Robotics	Arthur J. Critchlow (Mc Millan publication)
8.	Robotics for engineers	Yorom Koran (Mc G.H. Publication)
9.	Practical Robotics	Willium C. Burns Jr. & Janet Evans worthington (PHI publication)
10.	Computer aided manufacturing	Rao, Tiwari & Kundra (TMGH Publication)
11.	Computer automated	
	Manufacturing	John H. Powers Jr. (Mc GH Publication)
12.	CAD/CAM/FOF,	Vol I,II, & III Juneja, Pujara & Sagar (TMGH)
13.	Production and operations management	Chase/Aquilano (Irwin publication)

Subject Name: Hydraulic and Pneumatic Devices. (Elective)

Sr.	Subie	ect Content	Total
No.	·		Hrs.
1		TROL SYSTEMS.	3
	1.1		
	1.2	, , , , , , , , , , , , , , , , , , ,	
		Devices (HPD).	
	1.3	, , ,	
		application of HPD.	
	1.4		
		terminology used.	
	1.5	Open loop and close loop control systems-block	
		diagrams, differences and applications.	
	1.6	Servo control system-concept and application.	
2	FUND	DAMENTALS OF HYRAULICS.	3
	2.1	Hydrostatic and hydrodynamic-concept and definitions.	
	2.2	Laws governing fluid flows-Pascal's law, continuity equation and	
		Bernoulli's theorem.	
	2.3	Flow through pipes-types, pressure drop in pipes.	
		Working fluids used in hydraulic systems-types, properties, designation,	
		standards and selection criteria.	
	2.5	Hydraulic systems-concept, application areas, advantages and limitations.	
3	HYDF	RAULIC ELEMENTS.	5
	3.1	Hydraulic pipes-types, materials, designations and standards, properties,	
		pressure ratings and selection criteria.	
	3.2	Piping layout – concept, guiding rules/norms/traditions.	
	3.3	Hydraulic pump- types, construction, working, mounting methods,	
		applications and selection criteria.	
	3.4	Control valves – types, designations, standards, working, mounting	
		methods, applications and selection criteria.	
	3.5	Actuators- types, designations, standards, working, mounting methods,	
		applications, synchronization and selection criteria.	
	3.6		
		distributors, manifold, accumulator, coolers, heat exchangers, hoses,	
		connectors, oil reservoir, oil purifier, oil level and pressure indicators,	
		seals, etc.), designations, standards, working, mounting methods,	

	applications and selection exitoric	
	applications and selection criteria.	
4	HYDRAULIC CIRCUIT. 4.1 Concept, meaning and ISO symbols used. 4.2 Basic hydraulic circuits-types, circuit diagrams, working and applications. 4.3 Logic circuits-types, symbols and truth tables. 4.4 Guiding rules/norms/steps/methods for designing hydraulic circuit. Simple circuit design(at least two design based on given problems/situation and based on selection and arrangement of elements)-circuit diagram, list of elements with specifications, working, metering in	6
	and metering out control circuits.	
5	HYDRAULIC DEVICES, INSTALLATION AND MAINTENANCE. 5.1 Hydraulic devices-types (automotive hydraulic brake, material handling trolley/forklift, power pack, hydraulic jack, automotive power steering), working diagram, hydraulic circuit, working, major elements and their specifications, controls, performance variables/criteria, applications, general guidelines for operation.	5
	5.2 Installation of hydraulic devices (covered in 5.1 above)-need, prepreparation, connection methods for hydraulic circuit, procedure and testing.	
	5.3 Common troubles ,its causes and preventive/post remedial actions for hydraulic devices covered in 5.1 above.	
	5.4 Need for preventive maintenance and maintenance schedule for hydraulic devices, general guidelines for maintenance.	
	5.5 Critical spares and their need/importance for their stock for hydraulic devices.	
	5.6 Instruments/methods for common fault finding.	
6	FUNDAMENTALS OF PNEUMATICS.	2
	6.1 Compressible fluid flow-properties, applicable laws(Boyel's, Charles', Lussac's combined), mass flow rate.	
	6.2 Compressible fluids-types, properties and applications.6.3 Pneumatic systems-advantages and limitations.	
7	PNEUMATIC ELEMENTS.	5
	7.1 Pipe-materials, types, standards and designations, properties, applications.	
	7.2 Piping layout-concept, loop systems, guiding rules/norms/traditions, pressure drop.	
	7.3 Air compressor-types and selection criteria.7.4 Air receiver-specification, working, capacity control.	
	7.5 Driers-types, working and selection criteria.7.6 Pneumatic cylinders-types, cushion assemblies, types of mounts, construction materials, lubrication, installation and maintenance.	
	7.7 Air motors-types and working.7.8 Pneumatic valves-types, standards and designations, working, mounting	
	7.5 I hearnatio varves types, standards and designations, working, mounting	

	methods, applications and selection criteria. 7.9 Other fittings/elements and accessories-types and sub-types(such as	
	filters, pressure regulator, lubricator, mufflers), working, standards and	
	designations applications and selection criteria.	
8	PNEUMATIC CIRCUIT.	6
•	10.1 Concept, meaning and ISO symbols used.	O
	8.2 Guiding rules/norms/steps/methods for designing pneumatic circuit.	
	8.3 Basic pneumatic circuits- types, circuit diagrams, working	
	and applications.	
	8.4 Simple circuit design(at least two design based on given	
	problems/situation and based on selection and arrangement of elements)-	
	circuit diagram, list of elements with specifications and working.	
9	PNEUMATIC DEVICES, INSTALLATION AND	5
	MAINTENANCE.	
	9.1 Pneumatic devices-types,(pneumatic brake, air suspension system of	
	automotive, pneumatic drill) working diagram, hydraulic circuit, working,	
	major elements and their specifications, controls, performance	
	variables/criteria, applications, general guidelines for operation. 9.2 Safety and cleanliness for pneumatic devices.	
	9.3 Installation of pneumatic devices mentioned at 9.1 above,- need, pre-	
	preparation connection method for pneumatic circuit.	
	9.4 Common troubles ,its causes and preventive/post remedial actions for	
	pneumatic devices covered in 9.1 above.	
	9.5 Need for preventive maintenance and maintenance schedule for	
	pneumatic devices, general guidelines for maintenance.	
	9.6 Critical spares and their need/importance for their stock for pneumatic devices.	
	9.7 Instruments/methods for common fault finding.	
	o.7 metramente notation comment tach mang.	
10	HYDROPNEUMATICS.	2
	10.1 Introduction, elements, working and applications.	
	10.2 Types of feed.	
	10.3 Introduction to integration of hydraulic/pneumatic circuit with microprocessor/microcontroller/programmable logic controller (PLC).	
	microprocessor/microcontroller/programmable logic controller (FEG).	
	Total	42

1. Mechatronics

2. Hydraulic and Fluid mechanics and Hydraulic machineries

3. Fluid power design handbook

4. Hydraulic & Hydraulic machineries

5. Process control

W.Bolten (Pearsons)
Abdula Sharrif and others
(Dhanapatrai publications)
Frank Yeaple
TTTI,Madras.
Peter Harriott(TMGH)

6. Automatic process control

Donald P. Eckman(Wiely

7. Hydraulic machines including fluidics

Dr.Jagdishlal(metropolitine book co., NewDelhi.

Eastern)

8. Industrial pneumatic control

Z.J.Lansky(Marcel Dekker, Inc.

Subject Name: Hydraulic and Pneumatic Devices Practice

(Elective Practice)

Subject Code: 2361918

NOTE: - Following are the minimum experiences required, but the college can do more experiences if possible.

LABORATOR	LABORATORY EXPERIENCES :				
Experience Type	Experienc e Number	Description of Laboratory Experience	Total Hrs.		
Preparatory	01	3. Appreciate main objectives of learning this subject: a. Read/interpret given hydraulic/pneumatic circuit. b. Operate , maintain and assemble simple hydraulic and pneumatic devices/elements. c. Identify and rectify simple and common troubles of hydraulic and pneumatic devices. 4. Strengthen know how for fundamental fluid mechanics units and systems.	2		
Study and demonstration	02	Major hydraulic elements and at least three devices.	2		
	03	Major pneumatic elements and at least three devices.	2		
	04	Computer based hydraulic and pneumatic system circuit designs.	2		
Performance	05	Test various logic circuits for hydraulics and pneumatics.	2		
	06	Design, assemble and operate hydraulic system, based on given simple system requirement (Design mainly include selection and arrangement of elements).	4		
	07	Design, assemble and operate pneumatic system, based on given simple system requirement (Design	4		

		mainly include selection and arrangement of elements)	
	08	Take any two hydraulic devices/elements (eg. Power pack, cylinder, hydraulic jack, hydraulic brake), make system diagram, dismantle and assemble them.	6
	09	Take any two pneumatic devices/elements (eg. Pneumatic brake, cylinder, air suspension, pneumatic drill), make system diagram, dismantle and assemble them.	
Download and seminar presentation, (Copy downloaded content and seminar of whole batch In one /one set of CD/DVD)	10	 c) Prepare and present seminar individually in your batch. (Seminar topic has to be given by teacher). d) Download individually visual aids, movies, content and other related content for the given case/situation. (Case/situation has to be given by teacher)Present and discuss the same in your batch. 	4
Industrial visit	11	Visit at least two related industries.	-
Assignments (Home Assignment)	12	Solve the given tutorials and assignments. One assignment must be on preparation of chart / diagram / poster / graph / drawing / etc on half imperial size of drawing sheet.(For subject Mechatronics).	-
		Total	28

1. Mechatronics

2. Hydraulic and Fluid mechanics and machineries

3. Fluid power design handbook

4. Hydraulic & Hydraulic machineries

5. Process control

6. Automatic process control

7. Hydraulic machines including fluidics

8. Industrial pneumatic control

W.Bolten (Pearsons)

Abdula Sharrif and others Hydraulic

(Dhanapatrai publications)

Frank Yeaple

TTTI, Madras.

Peter Harriott(TMGH)

Donald P. Eckman(Wiely Eastern)

Dr.Jagdishlal(metropolitine

i. book co., NewDelhi.

Z.J.Lansky(Marcel Dekker, Inc.