Detailed syllabus for Semester II

B E (First Year) MATHEMATICS II

Sr.No.	Topics		
1	Vectors in R ⁿ		
	I. Properties of R ⁿ		
	II. Dot product, Norm and Distance properties in R ⁿ		
	III. Pythagorean theorem in R ⁿ		
2	Vector spaces		
	I. Definition & Examples		
	II. Vector Subspaces of R^n		
	III. Linear Independence and dependence		
	IV. Linear Span of set of vectors		
	V. Basis of subspaces, Extension to Basis		
3	System of linear equations		
	I. Matrices		
	a. Definition and Algebra of matrices		
	b. Types of Matrices		
	II. Methods to solve System of linear equations		
	a. Gaussian Elimination (Row echelon form)		
	b. Gauss-Jordan method (Reduced row echelon form).		
	c. Inverse of matrices		
	(i) By Gauss-Jordan method		
	(ii) By Determinant method		
	d. Rank of Matrix		
	(iii) By Row Echelon form		
	(iv) In terms of Determinant		
	(v) By row space and column space		
4	Linear Transformations		
	I. Definition and Basic properties		
	II. Types of Linear Transformations (Rotation,		
	reflection, expansion, contraction, shear, projection)		
	III. Matrix of Linear transformations		
	IV. Change of Basis and similarity		
	V. Rank Nullity Theorem (Dimension Theorem)		
L			

5	Inner Product S	Spaces
	I.	Definition and properties
	II.	Angle and orthogonal basis, Orthogonormality of
	basis	
	III.	Gram Schmidt's Orthogonalisation process
	IV.	Projections theorem
	V.	Least squares approximations (linear system)
6	Eigen values a	nd Eigen vectors
	I.	
		a. Definition
		b. Characteristic Polynomials
	II.	Eigen values of Orthogonal, symmetric, skew
		symmetric, Hermitian , skew Hermitian, unitary,
		normal matrix
	III.	Algebraic and geometric multiplicity
	IV.	Diagonalisation by similarity transformation
	V.	Spectral theorem for real symmetric matrices
		Application to Quadratic forms

Reference books:

- 1) H. Anton, Elementary linear algebra with applications-(9 th Edition), Wiley-India.(2008)
- 2) G. Strang, Linear Algebra and its applications (4 th Edition), Thomson.(2006)
- 3) E. Kreyszig, Advanced Engineering mathematics(8 th Edition), Wiley-India.(1999)
- 4) S. Kumaresan, Linear Algebra A Geometric approach , Prentice Hall India (2006)

Remark: All Results and Theorems are without proof